Valerii Filatov, Anna Filatova, Anatolii Povoroznyuk, Shakhin Omarov
{"title":"IMAGE CLASSIFIER FOR FAST SEARCH IN LARGE DATABASES","authors":"Valerii Filatov, Anna Filatova, Anatolii Povoroznyuk, Shakhin Omarov","doi":"10.20998/2522-9052.2024.2.02","DOIUrl":null,"url":null,"abstract":"Relevance. The avalanche-like growth in the amount of information on the Internet necessitates the development of effective methods for quickly processing such information in information systems. Clustering of news information is carried out by taking into account both the morphological analysis of texts and graphic content. Thus, an urgent task is the clustering of images accompanying textual information on various web resources, including news portals. The subject of study is an image classifier that exhibits low sensitivity to increased information in databases. The purpose of the article is to enhance the efficiency of searching for identical images in databases experiencing a daily influx of 10-12 thousand images, by developing an image classifier. Methods used: mathematical modeling, content-based image retrieval, two-dimensional discrete cosine transform, image processing methods, decision-making methods. The following results were obtained. An image classifier has been developed with low sensitivity to increased database information. The properties of the developed classifier have been analyzed. The experiments demonstrated that clustering information based on images using the developed classifier proved to be sufficiently fast and cost-effective in terms of information volumes and computational power requirements.","PeriodicalId":275587,"journal":{"name":"Advanced Information Systems","volume":"54 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2522-9052.2024.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Relevance. The avalanche-like growth in the amount of information on the Internet necessitates the development of effective methods for quickly processing such information in information systems. Clustering of news information is carried out by taking into account both the morphological analysis of texts and graphic content. Thus, an urgent task is the clustering of images accompanying textual information on various web resources, including news portals. The subject of study is an image classifier that exhibits low sensitivity to increased information in databases. The purpose of the article is to enhance the efficiency of searching for identical images in databases experiencing a daily influx of 10-12 thousand images, by developing an image classifier. Methods used: mathematical modeling, content-based image retrieval, two-dimensional discrete cosine transform, image processing methods, decision-making methods. The following results were obtained. An image classifier has been developed with low sensitivity to increased database information. The properties of the developed classifier have been analyzed. The experiments demonstrated that clustering information based on images using the developed classifier proved to be sufficiently fast and cost-effective in terms of information volumes and computational power requirements.