{"title":"Advances in 3D printing for polymer composites: A review","authors":"Tengbo Ma, Yali Zhang, Kunpeng Ruan, Hua Guo, Mukun He, Xuetao Shi, Yongqiang Guo, Jie Kong, Junwei Gu","doi":"10.1002/inf2.12568","DOIUrl":null,"url":null,"abstract":"<p>The potential of three-dimensional (3D) printing technology in the fabrication of advanced polymer composites is becoming increasingly evident. This review discusses the latest research developments and applications of 3D printing in polymer composites. First, it focuses on the optimization of 3D printing technology, that is, by upgrading the equipment or components or adjusting the printing parameters, to make them more adaptable to the processing characteristics of polymer composites and to improve the comprehensive performance of the products. Second, it focuses on the 3D printable novel consumables for polymer composites, which mainly include the new printing filaments, printing inks, photosensitive resins, and printing powders, introducing the unique properties of the new consumables and different ways to apply them to 3D printing. Finally, the applications of 3D printing technology in the preparation of functional polymer composites (such as thermal conductivity, electromagnetic interference shielding, biomedicine, self-healing, and environmental responsiveness) are explored, with a focus on the distribution of the functional fillers and the influence of the topological shapes on the properties and functional characteristics of the 3D printed products. The aim of this review is to deepen the understanding of the convergence between 3D printing technology and polymer composites and to anticipate future trends and applications.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 6","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12568","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12568","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of three-dimensional (3D) printing technology in the fabrication of advanced polymer composites is becoming increasingly evident. This review discusses the latest research developments and applications of 3D printing in polymer composites. First, it focuses on the optimization of 3D printing technology, that is, by upgrading the equipment or components or adjusting the printing parameters, to make them more adaptable to the processing characteristics of polymer composites and to improve the comprehensive performance of the products. Second, it focuses on the 3D printable novel consumables for polymer composites, which mainly include the new printing filaments, printing inks, photosensitive resins, and printing powders, introducing the unique properties of the new consumables and different ways to apply them to 3D printing. Finally, the applications of 3D printing technology in the preparation of functional polymer composites (such as thermal conductivity, electromagnetic interference shielding, biomedicine, self-healing, and environmental responsiveness) are explored, with a focus on the distribution of the functional fillers and the influence of the topological shapes on the properties and functional characteristics of the 3D printed products. The aim of this review is to deepen the understanding of the convergence between 3D printing technology and polymer composites and to anticipate future trends and applications.
三维(3D)打印技术在制造先进聚合物复合材料方面的潜力日益明显。本综述讨论了三维打印技术在聚合物复合材料中的最新研究进展和应用。首先,重点介绍三维打印技术的优化,即通过升级设备或部件或调整打印参数,使其更加适应聚合物复合材料的加工特性,提高产品的综合性能。其次,重点介绍了聚合物复合材料的3D打印新型耗材,主要包括新型打印长丝、打印油墨、光敏树脂、打印粉末等,介绍了新型耗材的独特性能以及应用于3D打印的不同方式。最后,探讨了三维打印技术在制备功能性聚合物复合材料(如导热性、电磁干扰屏蔽、生物医学、自愈性和环境响应性等)中的应用,重点介绍了功能性填料的分布以及拓扑形状对三维打印产品特性和功能特征的影响。本综述旨在加深对 3D 打印技术与聚合物复合材料融合的理解,并预测未来的发展趋势和应用。
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.