EVALUATION OF BEARING CAPACITY INCREASE FOR WOVEN GEOTEXTILE REINFORCED SOILS IN TERMS OF WIDTH OF FOOTING

Bayram Ateş, E. Şadoğlu
{"title":"EVALUATION OF BEARING CAPACITY INCREASE FOR WOVEN GEOTEXTILE REINFORCED SOILS IN TERMS OF WIDTH OF FOOTING","authors":"Bayram Ateş, E. Şadoğlu","doi":"10.17780/ksujes.1358122","DOIUrl":null,"url":null,"abstract":"If it is understood that a soil medium cannot safely support the planned structure from the point of bearing capacity and settlement, various options can be applied in geotechnical engineering. These are relocation of the structure, usage of deep foundation, stabilisation of the soil, substitution of weak soil with well-graded coarse-grained soil by compaction, usage of geosynthetics, etc. These alternatives are evaluated according to the cost and availability of necessary materials and equipment. Geotextiles, one of the geosynthetic products, have been widely used for soil reinforcement recently. Therefore, the study intends to specify the soil's bearing capacity increase with geotextile and its dependence on footing width. For this aim, a testing apparatus has been produced, and the experiments have been conducted with a strip footing model on soil with various relative densities. Besides, this test setup was simulated with PLAXIS 2D software depending on the finite element method (FEM), and numerical analyses were performed. The numerical results were compared with the laboratory tests to verify parameters of M-C material model. Consequently, the study stated that the relative density of the sand, footing width, and reinforcement layer are significant factors for the bearing capacity increase of granular soils.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"188 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1358122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If it is understood that a soil medium cannot safely support the planned structure from the point of bearing capacity and settlement, various options can be applied in geotechnical engineering. These are relocation of the structure, usage of deep foundation, stabilisation of the soil, substitution of weak soil with well-graded coarse-grained soil by compaction, usage of geosynthetics, etc. These alternatives are evaluated according to the cost and availability of necessary materials and equipment. Geotextiles, one of the geosynthetic products, have been widely used for soil reinforcement recently. Therefore, the study intends to specify the soil's bearing capacity increase with geotextile and its dependence on footing width. For this aim, a testing apparatus has been produced, and the experiments have been conducted with a strip footing model on soil with various relative densities. Besides, this test setup was simulated with PLAXIS 2D software depending on the finite element method (FEM), and numerical analyses were performed. The numerical results were compared with the laboratory tests to verify parameters of M-C material model. Consequently, the study stated that the relative density of the sand, footing width, and reinforcement layer are significant factors for the bearing capacity increase of granular soils.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据基脚宽度评估土工织物加固土的承载力提高情况
如果从承载力和沉降的角度来看,土壤介质无法安全地支撑计划中的结构,那么在岩土工程中可以采用多种方案。这些方案包括:结构搬迁、使用深基础、稳定土壤、通过压实用级配良好的粗粒土壤代替软弱土壤、使用土工合成材料等。这些替代方法都是根据成本和所需材料及设备的可用性进行评估的。土工织物是土工合成材料产品之一,近来已被广泛用于土壤加固。因此,本研究旨在明确土工织物对土壤承载力的提升作用及其与基脚宽度的关系。为此,我们制作了一个测试装置,并在不同相对密度的土壤上使用条形基脚模型进行了实验。此外,还利用 PLAXIS 2D 软件对试验装置进行了有限元模拟,并进行了数值分析。将数值结果与实验室试验进行比较,以验证 M-C 材料模型的参数。结果表明,砂的相对密度、基脚宽度和加固层是提高颗粒土承载力的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PİRAZOL TÜREVI BİR BİLEŞİĞİN KURAMSAL HESAPLAMALARI VE HİRSHFELD YÜZEY ANALİZİ GÜNCEL SANATTA BİR ÜRETİM BİÇİMİ OLARAK ÇEKİŞMELİ ÜRETKEN AĞLAR BENTONİT KUM KARIŞIMLARINDA ELASTİK DRENAJSIZ MODUL-SERBEST BASINÇ MUKAVEMETİ İLİŞKİSİ MULTİSPEKTRAL VE HİPERSPEKTRAL GÖRÜNTÜLEME TEKNİKLERİNİN MEYVE - SEBZE İŞLEME TESİSLERİNDE KULLANIM OLANAKLARI A DEEP LEARNING-BASED DEMAND FORECASTING SYSTEM FOR PLANNING ELECTRICITY GENERATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1