Fan Feng , Zhihui Zhao , Jiwei Li , Yuesheng Huang , Weichao Chen
{"title":"Multifunctional dressings for wound exudate management","authors":"Fan Feng , Zhihui Zhao , Jiwei Li , Yuesheng Huang , Weichao Chen","doi":"10.1016/j.pmatsci.2024.101328","DOIUrl":null,"url":null,"abstract":"<div><p>Wound exudates, the effusion of tissue fluid after injury, can act as a bridge for biochemical substance transfer and provide an environment for wound healing. However, excessive wound exudate prolongs the inflammatory phase and hinders healing, particularly in chronic wounds. Although dressings have long been used to absorb exudates and protect wounds, traditional dressings have non-negligible limitations in exudate management because of their single structure and function. Materials with asymmetric wettability and specific pore structures have unique advantages for controlling unidirectional liquid transport, providing a new approach for exudate management. In recent years, exudate management dressings have advanced significantly, but have seldom been described and discussed in detail. Therefore, this review systematically presents the mechanism, necessity, and configurations of exudate management dressings. Variously, textile-, nano/microfiber-, membrane-, foam/sponge-based, and composite exudate management dressings are reviewed. The methods for evaluating exudate management are briefly described and the current challenges and prospects are presented to provide references for the future development of dressings.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101328"},"PeriodicalIF":33.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000975","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wound exudates, the effusion of tissue fluid after injury, can act as a bridge for biochemical substance transfer and provide an environment for wound healing. However, excessive wound exudate prolongs the inflammatory phase and hinders healing, particularly in chronic wounds. Although dressings have long been used to absorb exudates and protect wounds, traditional dressings have non-negligible limitations in exudate management because of their single structure and function. Materials with asymmetric wettability and specific pore structures have unique advantages for controlling unidirectional liquid transport, providing a new approach for exudate management. In recent years, exudate management dressings have advanced significantly, but have seldom been described and discussed in detail. Therefore, this review systematically presents the mechanism, necessity, and configurations of exudate management dressings. Variously, textile-, nano/microfiber-, membrane-, foam/sponge-based, and composite exudate management dressings are reviewed. The methods for evaluating exudate management are briefly described and the current challenges and prospects are presented to provide references for the future development of dressings.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.