首页 > 最新文献

Progress in Materials Science最新文献

英文 中文
The rise of borophene 硼吩的崛起
IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-25 DOI: 10.1016/j.pmatsci.2024.101331
Prashant Kumar , Gurwinder Singh , Rohan Bahadur , Zhixuan Li , Xiangwei Zhang , C.I. Sathish , Mercy R. Benzigar , Thi Kim Anh Tran , Nisha T. Padmanabhan , Sithara Radhakrishnan , Jith C Janardhanan , Christy Ann Biji , Ann Jini Mathews , Honey John , Ehsan Tavakkoli , Ramaswamy Murugavel , Soumyabrata Roy , Pulickel M. Ajayan , Ajayan Vinu

Borophene stands out uniquely among Xenes with its metallic character, Dirac nature, exceptional electron mobility, thermal conductivity, and Young’s moduli—surpassing graphene. Invented in 2015, various methods, including atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition, have successfully been demonstrated to realize substrate-supported crystal growth. Top-down approaches like micromechanical, sonochemical, solvothermal and modified hummer’s techniques have also been employed. Thanks to its high electronic mobility, borophene serves as an active material for ultrafast sensing of light, gases, molecules, and strain. Its metallic behaviour, electrochemical activity, and anti-corrosive nature make it ideal for applications in energy storage and catalysis. It has been proven effective as an electrocatalyst for HER, OER, water splitting, CO2 reduction, and NH3 reduction reactions. Beyond this, borophene has found utility in bioimaging, biosensing, and various biomedical applications. A special emphasis will be given on the borophene nanoarchitectonics i.e. doped borophene and borophene-based hybrids with other 2D materials and nanoparticles and the theoretical understanding of these emerging materials systems to gain more insights on their electronic structure and properties, aiming to manipulate borophene for tailored applications.

硼铼在烯类材料中独树一帜,具有金属特性、狄拉克性质、优异的电子迁移率、热导率和杨氏模量,超越了石墨烯。2015 年发明的原子层沉积、分子束外延和化学气相沉积等多种方法已成功实现了基底支持的晶体生长。此外,还采用了自上而下的方法,如微机械、声化学、溶热和改良哈默技术。由于具有高电子迁移率,硼吩可作为一种活性材料用于光、气体、分子和应变的超快传感。它的金属特性、电化学活性和抗腐蚀性使其成为能量储存和催化应用的理想材料。事实证明,硼吩是一种有效的电催化剂,可用于 HER、OER、水分离、二氧化碳还原和 NH3 还原反应。除此以外,硼吩在生物成像、生物传感和各种生物医学应用中也有实用价值。本研究将特别强调硼吩纳米结构,即掺杂硼吩和基于硼吩与其他二维材料和纳米粒子的混合物,以及对这些新兴材料系统的理论理解,以获得对其电子结构和性能的更多见解,从而操纵硼吩以实现量身定制的应用。
{"title":"The rise of borophene","authors":"Prashant Kumar ,&nbsp;Gurwinder Singh ,&nbsp;Rohan Bahadur ,&nbsp;Zhixuan Li ,&nbsp;Xiangwei Zhang ,&nbsp;C.I. Sathish ,&nbsp;Mercy R. Benzigar ,&nbsp;Thi Kim Anh Tran ,&nbsp;Nisha T. Padmanabhan ,&nbsp;Sithara Radhakrishnan ,&nbsp;Jith C Janardhanan ,&nbsp;Christy Ann Biji ,&nbsp;Ann Jini Mathews ,&nbsp;Honey John ,&nbsp;Ehsan Tavakkoli ,&nbsp;Ramaswamy Murugavel ,&nbsp;Soumyabrata Roy ,&nbsp;Pulickel M. Ajayan ,&nbsp;Ajayan Vinu","doi":"10.1016/j.pmatsci.2024.101331","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101331","url":null,"abstract":"<div><p>Borophene stands out uniquely among Xenes with its metallic character, Dirac nature, exceptional electron mobility, thermal conductivity, and Young’s moduli—surpassing graphene. Invented in 2015, various methods, including atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition, have successfully been demonstrated to realize substrate-supported crystal growth. Top-down approaches like micromechanical, sonochemical, solvothermal and modified hummer’s techniques have also been employed. Thanks to its high electronic mobility, borophene serves as an active material for ultrafast sensing of light, gases, molecules, and strain. Its metallic behaviour, electrochemical activity, and anti-corrosive nature make it ideal for applications in energy storage and catalysis. It has been proven effective as an electrocatalyst for HER, OER, water splitting, CO<sub>2</sub> reduction, and NH<sub>3</sub> reduction reactions. Beyond this, borophene has found utility in bioimaging, biosensing, and various biomedical applications. A special emphasis will be given on the borophene nanoarchitectonics i.e. doped borophene and borophene-based hybrids with other 2D materials and nanoparticles and the theoretical understanding of these emerging materials systems to gain more insights on their electronic structure and properties, aiming to manipulate borophene for tailored applications.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":33.6,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001002/pdfft?md5=8327b74d988a3883b8f5c20c285c5481&pid=1-s2.0-S0079642524001002-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management 纤维增强聚合物复合材料综述:从原材料到应用、回收和废物管理
IF 33.6 1区 材料科学 Q1 Materials Science Pub Date : 2024-06-15 DOI: 10.1016/j.pmatsci.2024.101326
Bibekananda De , Madhab Bera , Debashish Bhattacharjee , Bankim Chandra Ray , Subrata Mukherjee

Fiber-Reinforced Polymer (FRP) composite has played a crucial role in replacing metals in numerous applications due to its superior properties and ease of manufacturing. Raw materials, design flexibility, microstructure, durability, and advanced fabrication techniques have further diversified its applications. However, consumption of a huge amount of synthetic polymeric materials and fibers in FRP composites poses a serious challenge to recycling and waste management. Most of the high-performance FRP composites are based on thermoset polymeric materials, which are non-recyclable. Therefore, fundamental research has been initiated on recycling of thermoset-based FRP composites. This review provides a comprehensive study of raw materials used for FRP composites and their applications and waste management, along with a future perspective. The review provides an insight into the chemistry of raw materials and techniques of their synthesis and extraction, fabrication, interface chemistry, structural analysis, and microstructural characterizations of FRP composites. It also focusses on the recent progress of FRP composites as an alternative to metals for various applications and the challenges faced. In addition, the review offers a special emphasis on Vitrimers, waste management, and biodegradation of FRP composites. Finally, the role of FRP composites for hydrogen storage and other futuristic applications is critically discussed.

纤维增强聚合物(FRP)复合材料因其卓越的性能和易于制造的特点,在众多应用中取代金属发挥了至关重要的作用。原材料、设计灵活性、微观结构、耐久性和先进的制造技术使其应用更加多样化。然而,玻璃钢复合材料需要消耗大量的合成聚合物材料和纤维,这给回收利用和废物管理带来了严峻挑战。大多数高性能玻璃钢复合材料都以热固性聚合物材料为基础,而这种材料是不可回收的。因此,人们开始对热固性玻璃钢复合材料的回收利用进行基础研究。本综述全面研究了玻璃钢复合材料所用的原材料及其应用和废物管理,并展望了未来。综述深入探讨了玻璃钢复合材料的原材料化学及其合成和提取技术、制造、界面化学、结构分析和微观结构特征。报告还重点介绍了玻璃钢复合材料作为金属替代品在各种应用领域的最新进展以及面临的挑战。此外,该综述还特别强调了玻璃钢复合材料的 Vitrimers、废物管理和生物降解。最后,还批判性地讨论了玻璃钢复合材料在储氢和其他未来应用中的作用。
{"title":"A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management","authors":"Bibekananda De ,&nbsp;Madhab Bera ,&nbsp;Debashish Bhattacharjee ,&nbsp;Bankim Chandra Ray ,&nbsp;Subrata Mukherjee","doi":"10.1016/j.pmatsci.2024.101326","DOIUrl":"10.1016/j.pmatsci.2024.101326","url":null,"abstract":"<div><p>Fiber-Reinforced Polymer (FRP) composite has played a crucial role in replacing metals in numerous applications due to its superior properties and ease of manufacturing. Raw materials, design flexibility, microstructure, durability, and advanced fabrication techniques have further diversified its applications. However, consumption of a huge amount of synthetic polymeric materials and fibers in FRP composites poses a serious challenge to recycling and waste management. Most of the high-performance FRP composites are based on thermoset polymeric materials, which are non-recyclable. Therefore, fundamental research has been initiated on recycling of thermoset-based FRP composites. This review provides a comprehensive study of raw materials used for FRP composites and their applications and waste management, along with a future perspective. The review provides an insight into the chemistry of raw materials and techniques of their synthesis and extraction, fabrication, interface chemistry, structural analysis, and microstructural characterizations of FRP composites. It also focusses on the recent progress of FRP composites as an alternative to metals for various applications and the challenges faced. In addition, the review offers a special emphasis on Vitrimers, waste management, and biodegradation of FRP composites. Finally, the role of FRP composites for hydrogen storage and other futuristic applications is critically discussed.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":33.6,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional dressings for wound exudate management 用于伤口渗液管理的多功能敷料
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-06-13 DOI: 10.1016/j.pmatsci.2024.101328
Fan Feng , Zhihui Zhao , Jiwei Li , Yuesheng Huang , Weichao Chen

Wound exudates, the effusion of tissue fluid after injury, can act as a bridge for biochemical substance transfer and provide an environment for wound healing. However, excessive wound exudate prolongs the inflammatory phase and hinders healing, particularly in chronic wounds. Although dressings have long been used to absorb exudates and protect wounds, traditional dressings have non-negligible limitations in exudate management because of their single structure and function. Materials with asymmetric wettability and specific pore structures have unique advantages for controlling unidirectional liquid transport, providing a new approach for exudate management. In recent years, exudate management dressings have advanced significantly, but have seldom been described and discussed in detail. Therefore, this review systematically presents the mechanism, necessity, and configurations of exudate management dressings. Variously, textile-, nano/microfiber-, membrane-, foam/sponge-based, and composite exudate management dressings are reviewed. The methods for evaluating exudate management are briefly described and the current challenges and prospects are presented to provide references for the future development of dressings.

伤口渗出液是受伤后渗出的组织液,可作为生化物质转移的桥梁,为伤口愈合提供环境。然而,伤口渗出液过多会延长炎症期,阻碍伤口愈合,尤其是慢性伤口。虽然敷料长期以来一直用于吸收渗出物和保护伤口,但由于其结构和功能单一,传统敷料在渗出物管理方面存在不可忽视的局限性。具有非对称润湿性和特定孔隙结构的材料在控制液体单向传输方面具有独特的优势,为渗出物管理提供了一种新的方法。近年来,渗出物管理敷料有了长足的进步,但很少有详细的描述和讨论。因此,本综述系统地介绍了渗出物管理敷料的机制、必要性和配置。综述了纺织、纳米/超细纤维、薄膜、泡沫/海绵和复合渗出物管理敷料。简要介绍了评估渗出物管理的方法,并介绍了当前的挑战和前景,为敷料的未来发展提供参考。
{"title":"Multifunctional dressings for wound exudate management","authors":"Fan Feng ,&nbsp;Zhihui Zhao ,&nbsp;Jiwei Li ,&nbsp;Yuesheng Huang ,&nbsp;Weichao Chen","doi":"10.1016/j.pmatsci.2024.101328","DOIUrl":"10.1016/j.pmatsci.2024.101328","url":null,"abstract":"<div><p>Wound exudates, the effusion of tissue fluid after injury, can act as a bridge for biochemical substance transfer and provide an environment for wound healing. However, excessive wound exudate prolongs the inflammatory phase and hinders healing, particularly in chronic wounds. Although dressings have long been used to absorb exudates and protect wounds, traditional dressings have non-negligible limitations in exudate management because of their single structure and function. Materials with asymmetric wettability and specific pore structures have unique advantages for controlling unidirectional liquid transport, providing a new approach for exudate management. In recent years, exudate management dressings have advanced significantly, but have seldom been described and discussed in detail. Therefore, this review systematically presents the mechanism, necessity, and configurations of exudate management dressings. Variously, textile-, nano/microfiber-, membrane-, foam/sponge-based, and composite exudate management dressings are reviewed. The methods for evaluating exudate management are briefly described and the current challenges and prospects are presented to provide references for the future development of dressings.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in developing cost-effective carbon fibers by coupling multiscale modeling and experiments: A critical review 将多尺度建模与实验相结合,在开发具有成本效益的碳纤维方面取得进展:重要综述
IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-13 DOI: 10.1016/j.pmatsci.2024.101329
Jiadeng Zhu , Zan Gao , Qian Mao , Yawei Gao , Ya Li , Xin Zhang , Qiang Gao , Mengjin Jiang , Sungho Lee , Adri C.T. van Duin

Carbon fibers (CFs) have received remarkable attention in recent decades because of their excellent mechanical properties, low density, and outstanding chemical/thermal stability. However, due to their high cost, the usage of CFs is still limited to high-end applications. Tremendous efforts have been made to fabricate cost-effective CFs by exploring alternative precursors, developing spinning methods, and optimizing processing conditions. Nevertheless, selecting a successful precursor with a matching experimental procedure is still challenging. As an alternative to the experiment, we can utilize predictive modeling at multiscale levels to understand and predict CFs’ behaviors and properties with desired accuracy yet at a significantly reduced cost. The modeling efforts can subsequently be integrated with experimental studies. This review aims to provide a comprehensive and critical overview of efforts to reduce the overall cost of CF preparation via various precursors and by including computational prediction. First, it briefly describes the progress and challenges of CFs, followed by investigating different precursors that may affect their properties. Then, state-of-the-art developments regarding experimental and computational studies for achieving low-cost CFs are discussed in detail. In the end, a summary of the current achievements and a future vision of challenges and possible solutions to obtain cost-effective CFs are given.

近几十年来,碳纤维(CF)因其优异的机械性能、低密度和出色的化学/热稳定性而备受关注。然而,由于成本高昂,碳纤维的使用仍局限于高端应用领域。通过探索替代前驱体、开发纺丝方法和优化加工条件,人们为制造具有成本效益的 CF 做出了巨大努力。然而,选择成功的前驱体和匹配的实验程序仍然具有挑战性。作为实验的替代方法,我们可以利用多尺度预测建模来了解和预测 CF 的行为和特性,以达到理想的精度,同时大大降低成本。建模工作随后可与实验研究相结合。本综述旨在对通过各种前驱体和计算预测来降低 CF 制备总体成本的工作进行全面而重要的概述。首先,它简要介绍了 CF 的进展和挑战,然后研究了可能影响其特性的不同前体。然后,详细讨论了实现低成本 CF 的实验和计算研究的最新进展。最后,总结了当前的成就,并展望了未来的挑战和可能的解决方案,以获得具有成本效益的 CF。
{"title":"Advances in developing cost-effective carbon fibers by coupling multiscale modeling and experiments: A critical review","authors":"Jiadeng Zhu ,&nbsp;Zan Gao ,&nbsp;Qian Mao ,&nbsp;Yawei Gao ,&nbsp;Ya Li ,&nbsp;Xin Zhang ,&nbsp;Qiang Gao ,&nbsp;Mengjin Jiang ,&nbsp;Sungho Lee ,&nbsp;Adri C.T. van Duin","doi":"10.1016/j.pmatsci.2024.101329","DOIUrl":"10.1016/j.pmatsci.2024.101329","url":null,"abstract":"<div><p>Carbon fibers (CFs) have received remarkable attention in recent decades because of their excellent mechanical properties, low density, and outstanding chemical/thermal stability. However, due to their high cost, the usage of CFs is still limited to high-end applications. Tremendous efforts have been made to fabricate cost-effective CFs by exploring alternative precursors, developing spinning methods, and optimizing processing conditions. Nevertheless, selecting a successful precursor with a matching experimental procedure is still challenging. As an alternative to the experiment, we can utilize predictive modeling at multiscale levels to understand and predict CFs’ behaviors and properties with desired accuracy yet at a significantly reduced cost. The modeling efforts can subsequently be integrated with experimental studies. This review aims to provide a comprehensive and critical overview of efforts to reduce the overall cost of CF preparation via various precursors and by including computational prediction. First, it briefly describes the progress and challenges of CFs, followed by investigating different precursors that may affect their properties. Then, state-of-the-art developments regarding experimental and computational studies for achieving low-cost CFs are discussed in detail. In the end, a summary of the current achievements and a future vision of challenges and possible solutions to obtain cost-effective CFs are given.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":33.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141398374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced strategies for the synthesis and modulation of 2D layered heterostructures for energy conversion and storage applications 合成和调制二维层状异质结构用于能量转换和存储应用的先进策略
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-06-10 DOI: 10.1016/j.pmatsci.2024.101325
Waseem Raza , Attia Shaheen , Noureen Amir Khan , Ki Hyun Kim , Xingke Cai

Two-dimensional heterostructures (2D HSs) are popular candidates for sustainable energy conversion and storage applications through the synergetic combination of nanosized heterojunctions with intriguing functionalities. The properties of 2D heterointerfaces can be well-regulated for scaled-up applications through synthetic tuning and/or engineering design. In this perspective, the synthesis protocols of 2D heterostructure are first discussed, along with associated modulation strategies to better describe the required functionalities for scaled-up applications. Computational insights are also provided to regulate and predict the heterointerface of the outlined structures based on various models (e.g., atomic, micro, and mesoscale simulations). The role of modulated 2D heterostructures is highlighted with respect to the energy applications along with the current challenges for 2D heterostructure development. This review is anticipated to deliver new paths for the design and construction of 2D heterostructures toward the practical applications in multiple fields with a focus on energy conversion and storage.

二维异质结构(2D HSs)是可持续能源转换和存储应用的热门候选材料,它将纳米级异质结与引人入胜的功能性协同结合在一起。二维异质界面的特性可通过合成调整和/或工程设计进行良好调节,以扩大应用规模。从这个角度出发,首先讨论了二维异质结构的合成方案以及相关的调制策略,以便更好地描述放大应用所需的功能。此外,还提供了基于各种模型(如原子、微观和中尺度模拟)的计算见解,以调节和预测所概述结构的异质界面。重点介绍了调制二维异质结构在能源应用方面的作用,以及当前二维异质结构发展所面临的挑战。预计本综述将为二维异质结构的设计和构建提供新的途径,使其在以能量转换和存储为重点的多个领域得到实际应用。
{"title":"Advanced strategies for the synthesis and modulation of 2D layered heterostructures for energy conversion and storage applications","authors":"Waseem Raza ,&nbsp;Attia Shaheen ,&nbsp;Noureen Amir Khan ,&nbsp;Ki Hyun Kim ,&nbsp;Xingke Cai","doi":"10.1016/j.pmatsci.2024.101325","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101325","url":null,"abstract":"<div><p>Two-dimensional heterostructures (2D HSs) are popular candidates for sustainable energy conversion and storage applications through the synergetic combination of nanosized heterojunctions with intriguing functionalities. The properties of 2D heterointerfaces can be well-regulated for scaled-up applications through synthetic tuning and/or engineering design. In this perspective, the synthesis protocols of 2D heterostructure are first discussed, along with associated modulation strategies to better describe the required functionalities for scaled-up applications. Computational insights are also provided to regulate and predict the heterointerface of the outlined structures based on various models (e.g., atomic, micro, and mesoscale simulations). The role of modulated 2D heterostructures is highlighted with respect to the energy applications along with the current challenges for 2D heterostructure development. This review is anticipated to deliver new paths for the design and construction of 2D heterostructures toward the practical applications in multiple fields with a focus on energy conversion and storage.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical review on mechanochemical fabrication of full-carbon graphyne material 全碳石墨烯材料的机械化制备评述
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-06-09 DOI: 10.1016/j.pmatsci.2024.101327
Linrui Wang , Zixiang Hao , Shengpeng Chen , Haoyu Chen , Yichun Lou , Chengli He , Yang Chen , Xiaoli Cui

Graphyne, a novel regularly sp-/sp2-hybridized carbon allotrope, has attracted significant interest in synthetic chemistry and various applications. As a promising approach for material synthesis, mechanochemistry has first been successfully applied to fabricate γ-graphyne (γ-GY) which exhibits highest structural stability among graphyne family and possesses fascinating properties like a direct bandgap and unique nanoporosity. The γ-GY skeleton forms via an alkyne nucleophilic cross-coupling reaction induced by intense mechanical energy using hexahalobenzene and calcium carbide as precursors. This mechanochemical strategy is simple, high-yielding, scalable, and commercially viable. This review aims to offer a comprehensive and critical understanding of mechanochemical synthesis of γ-GY. Firstly, the basic concept, physicochemical properties and potential applications of graphyne, especially γ-GY, are introduced. Subsequently, the review summarizes several state-of-the-art synthetic strategies for γ-GY and corresponding representative characterizations. Furthermore, the feasibility of mechanosynthesis for γ-GY is elucidated through the discussion of its origin which involves mechanochemical dehalogenation, and its subsequent development for the synthesis of alkynyl cross-linked carbon derivatives. The reaction mechanism, and controversial factors (including solvent issue, side reaction, and carbonaceous impurities) of the mechanochemical route are adequately outlined and analyzed. Evidence confirms the existence of γ-GY in the as-prepared sample and inevitable generation of by-products such as carbonaceous impurities. Finally, the challenges and future research directions of mechanochemical synthesizing high-quality γ-GY and derivatives (analogues) are proposed.

石墨烯是一种新型的sp-/sp2杂化碳同素异形体,在合成化学和各种应用领域引起了极大的兴趣。作为一种前景广阔的材料合成方法,机械化学首次被成功应用于制备γ-石墨烯(γ-GY),它在石墨烯家族中具有最高的结构稳定性,并拥有直接带隙和独特的纳米孔隙率等迷人特性。γ-GY骨架是以六卤苯和碳化钙为前驱体,在高机械能的诱导下通过炔亲核交叉耦合反应形成的。这种机械化学策略简单、高产、可扩展且具有商业可行性。本综述旨在对γ-GY 的机械化学合成提供一个全面而深入的了解。首先,介绍了石墨烯,尤其是γ-GY 的基本概念、理化性质和潜在应用。随后,综述总结了几种最先进的 γ-GY 合成策略和相应的代表性表征。此外,通过讨论γ-GY 机械合成的起源(包括机械化学脱卤)及其在合成炔基交联碳衍生物方面的后续发展,阐明了γ-GY 机械合成的可行性。报告充分概述和分析了机械化学路线的反应机理和争议因素(包括溶剂问题、副反应和碳杂质)。有证据证实,在制备的样品中存在γ-GY,而且不可避免地会产生碳质杂质等副产物。最后,提出了机械化学合成高质量 γ-GY 及其衍生物(类似物)所面临的挑战和未来的研究方向。
{"title":"Critical review on mechanochemical fabrication of full-carbon graphyne material","authors":"Linrui Wang ,&nbsp;Zixiang Hao ,&nbsp;Shengpeng Chen ,&nbsp;Haoyu Chen ,&nbsp;Yichun Lou ,&nbsp;Chengli He ,&nbsp;Yang Chen ,&nbsp;Xiaoli Cui","doi":"10.1016/j.pmatsci.2024.101327","DOIUrl":"10.1016/j.pmatsci.2024.101327","url":null,"abstract":"<div><p>Graphyne, a novel regularly sp-/sp<sup>2</sup>-hybridized carbon allotrope, has attracted significant interest in synthetic chemistry and various applications. As a promising approach for material synthesis, mechanochemistry has first been successfully applied to fabricate γ-graphyne (γ-GY) which exhibits highest structural stability among graphyne family and possesses fascinating properties like a direct bandgap and unique nanoporosity. The γ-GY skeleton forms via an alkyne nucleophilic cross-coupling reaction induced by intense mechanical energy using hexahalobenzene and calcium carbide as precursors. This mechanochemical strategy is simple, high-yielding, scalable, and commercially viable. This review aims to offer a comprehensive and critical understanding of mechanochemical synthesis of γ-GY. Firstly, the basic concept, physicochemical properties and potential applications of graphyne, especially γ-GY, are introduced. Subsequently, the review summarizes several state-of-the-art synthetic strategies for γ-GY and corresponding representative characterizations. Furthermore, the feasibility of mechanosynthesis for γ-GY is elucidated through the discussion of its origin which involves mechanochemical dehalogenation, and its subsequent development for the synthesis of alkynyl cross-linked carbon derivatives. The reaction mechanism, and controversial factors (including solvent issue, side reaction, and carbonaceous impurities) of the mechanochemical route are adequately outlined and analyzed. Evidence confirms the existence of γ-GY in the as-prepared sample and inevitable generation of by-products such as carbonaceous impurities. Finally, the challenges and future research directions of mechanochemical synthesizing high-quality γ-GY and derivatives (analogues) are proposed.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141414803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent development of membranes for carbon capture: From materials to asymmetric membranes 碳捕获膜的最新发展:从材料到不对称膜
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-06-06 DOI: 10.1016/j.pmatsci.2024.101324
Yuewen Jia , Kelvin Wong , Can Zeng Liang , Ji Wu , Tai-Shung Chung , Sui Zhang

Membrane technology has emerged as a promising approach for various CO2 capture applications, including but not limited to hydrogen purification, natural gas processing, biogas upgrading and flue gas post-treatment. Past decades have seen tremendous efforts in developing new materials with better intrinsic separation capacities. However, only a few of them have made their way to the market. It is therefore timely to compile a review that identifies the gap between materials development and fabrication of asymmetric membranes for carbon capture applications. In this review, we give an overview of the recent development of membrane materials for CO2 separation. Then, we summarize the processing techniques to turn materials into asymmetric membranes and state-of-the-art membranes. Based upon detailed presentation of literature data, we identify the obstacles preventing CO2 capture membranes from moving from the lab to the large scale. Last, perspectives on future membrane development are discussed.

在各种二氧化碳捕集应用中,包括但不限于氢气净化、天然气处理、沼气提纯和烟气后处理,膜技术已成为一种前景广阔的方法。过去几十年来,人们在开发具有更好内在分离能力的新材料方面付出了巨大努力。然而,只有少数几种材料进入了市场。因此,现在正是编撰综述的好时机,以确定用于碳捕集应用的不对称膜的材料开发与制造之间的差距。在本综述中,我们概述了二氧化碳分离膜材料的最新发展。然后,我们总结了将材料转化为不对称膜的加工技术和最先进的膜。在详细介绍文献数据的基础上,我们指出了阻碍二氧化碳捕集膜从实验室走向大规模应用的障碍。最后,我们讨论了未来膜发展的前景。
{"title":"Recent development of membranes for carbon capture: From materials to asymmetric membranes","authors":"Yuewen Jia ,&nbsp;Kelvin Wong ,&nbsp;Can Zeng Liang ,&nbsp;Ji Wu ,&nbsp;Tai-Shung Chung ,&nbsp;Sui Zhang","doi":"10.1016/j.pmatsci.2024.101324","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101324","url":null,"abstract":"<div><p>Membrane technology has emerged as a promising approach for various CO<sub>2</sub> capture applications, including but not limited to hydrogen purification, natural gas processing, biogas upgrading and flue gas post-treatment. Past decades have seen tremendous efforts in developing new materials with better intrinsic separation capacities. However, only a few of them have made their way to the market. It is therefore timely to compile a review that identifies the gap between materials development and fabrication of asymmetric membranes for carbon capture applications. In this review, we give an overview of the recent development of membrane materials for CO<sub>2</sub> separation. Then, we summarize the processing techniques to turn materials into asymmetric membranes and state-of-the-art membranes. Based upon detailed presentation of literature data, we identify the obstacles preventing CO<sub>2</sub> capture membranes from moving from the lab to the large scale. Last, perspectives on future membrane development are discussed.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials science-based guidelines to develop robust hard thin film materials 基于材料科学的指南,开发坚固的硬薄膜材料
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-06-03 DOI: 10.1016/j.pmatsci.2024.101323
Paul H. Mayrhofer , Helmut Clemens , Franz D. Fischer

For mechanically dominated load profiles, nitrides are preferred as the base material for structural and functional hard coatings, while oxide-based materials offer better protection against high-temperature corrosion (such as oxidation). Thus, when mechanical and thermal loads are combined, the nitrides used should also have excellent stability against temperature and oxidation. How to develop such nitride materials that can withstand both high mechanical and thermal loads is the focus of this review article. This is done primarily with the help of experimental and theoretical investigations of the Ti–Al–N system.

On the basis of transition metal nitride coatings, we discuss important material development guidelines for improved strength, fracture toughness as well as thermal stability and oxidation resistance. Using various superlattice coatings, we further discuss how such nanolamellar microstructures can improve both the strength and fracture toughness of hard coating materials. In addition, other concepts for improving fracture toughness are discussed, with a focus on those that can increase both fracture toughness and hardness.

The individual concepts allow to design materials to meet the ever-growing demand for coatings with a wide range of excellent properties and outstanding property combinations.

对于以机械载荷为主的情况,氮化物是结构性和功能性硬涂层的首选基材,而氧化物基材则能更好地防止高温腐蚀(如氧化)。因此,当机械载荷和热载荷结合在一起时,所使用的氮化物还应具有出色的耐温性和抗氧化性。如何开发出既能承受高机械负荷又能承受热负荷的氮化物材料,是本综述文章的重点。在过渡金属氮化物涂层的基础上,我们讨论了提高强度、断裂韧性以及热稳定性和抗氧化性的重要材料开发指南。利用各种超晶格涂层,我们进一步讨论了这种纳米胶束微结构如何提高硬涂层材料的强度和断裂韧性。此外,我们还讨论了提高断裂韧性的其他概念,重点是那些既能提高断裂韧性又能提高硬度的概念。通过这些概念,我们可以设计出具有各种优异性能和出色性能组合的涂层材料,以满足日益增长的需求。
{"title":"Materials science-based guidelines to develop robust hard thin film materials","authors":"Paul H. Mayrhofer ,&nbsp;Helmut Clemens ,&nbsp;Franz D. Fischer","doi":"10.1016/j.pmatsci.2024.101323","DOIUrl":"10.1016/j.pmatsci.2024.101323","url":null,"abstract":"<div><p>For mechanically dominated load profiles, nitrides are preferred as the base material for structural and functional hard coatings, while oxide-based materials offer better protection against high-temperature corrosion (such as oxidation). Thus, when mechanical and thermal loads are combined, the nitrides used should also have excellent stability against temperature and oxidation. How to develop such nitride materials that can withstand both high mechanical and thermal loads is the focus of this review article. This is done primarily with the help of experimental and theoretical investigations of the Ti–Al–N system.</p><p>On the basis of transition metal nitride coatings, we discuss important material development guidelines for improved strength, fracture toughness as well as thermal stability and oxidation resistance. Using various superlattice coatings, we further discuss how such nanolamellar microstructures can improve both the strength and fracture toughness of hard coating materials. In addition, other concepts for improving fracture toughness are discussed, with a focus on those that can increase both fracture toughness and hardness.</p><p>The individual concepts allow to design materials to meet the ever-growing demand for coatings with a wide range of excellent properties and outstanding property combinations.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000926/pdfft?md5=c0df671b3b846a5558c76972286ffa19&pid=1-s2.0-S0079642524000926-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water 揭示高效去除水中有毒金属离子的高比表面积多孔材料的前沿进展
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-06-03 DOI: 10.1016/j.pmatsci.2024.101314
Padmaja V. Mane , Richelle M. Rego , Pei Lay Yap , Dusan Losic , Mahaveer D. Kurkuri

This review offers a comprehensive evaluation of an emerging category of adsorbing materials known as high surface area materials (HSAMs) in the realm of water remediation. The objective is to shed light on recent advancements in HSAMs featuring multiple dimensionalities, addressing their efficacy in adsorbing toxic metal ions from wastewater. The spectrum of HSAMs examined in this review encompasses metal–organic frameworks (MOFs), covalent organic frameworks (COFs), carbon-based porous materials, mesoporous silica, polymer-based porous materials, layered double hydroxides, and aerogels. This review delves into the state-of-the-art design and synthetic approaches for these materials, elucidating their inherent properties. It particularly emphasizes how the combination of high surface area and pore structure contributes to their effectiveness in adsorbing toxic metal ions. These materials possess remarkable attributes, including molecular functionalization versatility, high porosity, expansive surface area, distinctive physicochemical characteristics, and well-defined crystal structures, rendering them exceptional adsorbents. While each of these materials boasts unique advantages stemming from their remarkable properties, their synthesis often entails intricate and costly procedures, presenting a substantial obstacle to their commercialization and widespread adoption. Finally, the review underscores the existing challenges that must be addressed to expedite their translation for water remediation applications of these promising materials.

本综述全面评估了水处理领域中新兴的一类吸附材料,即高比表面积材料(HSAMs)。其目的是阐明具有多种维度的高表面积材料的最新进展,探讨它们在吸附废水中有毒金属离子方面的功效。本综述研究的 HSAMs 包括金属有机框架 (MOF)、共价有机框架 (COF)、碳基多孔材料、介孔二氧化硅、聚合物基多孔材料、层状双氢氧化物和气凝胶。本综述深入探讨了这些材料的最新设计和合成方法,阐明了它们的固有特性。其中特别强调了高比表面积和孔隙结构的结合如何有助于它们有效吸附有毒金属离子。这些材料具有卓越的特性,包括分子官能化多功能性、高孔隙率、广阔的表面积、独特的物理化学特性和明确的晶体结构,使它们成为卓越的吸附剂。虽然每种材料都因其显著的特性而具有独特的优势,但其合成过程往往复杂而昂贵,对其商业化和广泛应用构成了巨大的障碍。最后,本综述强调了必须应对的现有挑战,以加快将这些前景广阔的材料转化为水修复应用。
{"title":"Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water","authors":"Padmaja V. Mane ,&nbsp;Richelle M. Rego ,&nbsp;Pei Lay Yap ,&nbsp;Dusan Losic ,&nbsp;Mahaveer D. Kurkuri","doi":"10.1016/j.pmatsci.2024.101314","DOIUrl":"10.1016/j.pmatsci.2024.101314","url":null,"abstract":"<div><p>This review offers a comprehensive evaluation of an emerging category of adsorbing materials known as high surface area materials (HSAMs) in the realm of water remediation. The objective is to shed light on recent advancements in HSAMs featuring multiple dimensionalities, addressing their efficacy in adsorbing toxic metal ions from wastewater. The spectrum of HSAMs examined in this review encompasses metal–organic frameworks (MOFs), covalent organic frameworks (COFs), carbon-based porous materials, mesoporous silica, polymer-based porous materials, layered double hydroxides, and aerogels. This review delves into the state-of-the-art design and synthetic approaches for these materials, elucidating their inherent properties. It particularly emphasizes how the combination of high surface area and pore structure contributes to their effectiveness in adsorbing toxic metal ions. These materials possess remarkable attributes, including molecular functionalization versatility, high porosity, expansive surface area, distinctive physicochemical characteristics, and well-defined crystal structures, rendering them exceptional adsorbents. While each of these materials boasts unique advantages stemming from their remarkable properties, their synthesis often entails intricate and costly procedures, presenting a substantial obstacle to their commercialization and widespread adoption. Finally, the review underscores the existing challenges that must be addressed to expedite their translation for water remediation applications of these promising materials.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000835/pdfft?md5=7495ac851cbb616c208e0042fe660466&pid=1-s2.0-S0079642524000835-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steels for rails 钢轨用钢
IF 37.4 1区 材料科学 Q1 Materials Science Pub Date : 2024-05-31 DOI: 10.1016/j.pmatsci.2024.101313
W. Solano-Alvarez , H.K.D.H. Bhadeshia

Transport by rail is an efficient way of moving goods and people while managing problems such as congestion and the consequences on the environment. The relatively low energy consumption and CO2 emissions are attributed to the low rolling-resistance due to the stiffness of the wheel and rail, leading to small contact area [1]. Investments in rail transportation has boomed in recent years. London, with the oldest underground rail system in the world, has added the Elisabeth Line at a cost of some £14 billion; China now has the largest high-speed rail system in the world. All these developments rely on the safe performance of steel rails, which suffer from two primary damage mechanisms, rolling-contact fatigue caused essentially by repeated contact stresses with the wheel, and a variety of wear mechanisms. Factors such as weldability are important, given that all modern rails are continuous. This review deals with the detailed physical-metallurgy of rail steels, including alloy design, microstructure, variety and choice, and damage mechanisms.

铁路运输是一种高效的货物和人员运输方式,同时还能解决交通拥堵和对环境造成的影响等问题。相对较低的能耗和二氧化碳排放量归功于车轮和轨道的刚度导致的低滚动阻力,从而使接触面积变小[1]。近年来,轨道交通投资蓬勃发展。伦敦拥有世界上最古老的地下铁路系统,耗资约 140 亿英镑增建了伊丽莎白线;中国目前拥有世界上最大的高速铁路系统。所有这些发展都有赖于钢轨的安全性能,而钢轨主要有两种损坏机制:主要由与车轮反复接触应力引起的滚动接触疲劳和各种磨损机制。由于所有现代钢轨都是连续的,因此可焊性等因素非常重要。本综述详细介绍了钢轨钢的物理冶金学,包括合金设计、微观结构、种类和选择以及损坏机制。
{"title":"Steels for rails","authors":"W. Solano-Alvarez ,&nbsp;H.K.D.H. Bhadeshia","doi":"10.1016/j.pmatsci.2024.101313","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101313","url":null,"abstract":"<div><p>Transport by rail is an efficient way of moving goods and people while managing problems such as congestion and the consequences on the environment. The relatively low energy consumption and CO<sub>2</sub> emissions are attributed to the low rolling-resistance due to the stiffness of the wheel and rail, leading to small contact area <span>[1]</span>. Investments in rail transportation has boomed in recent years. London, with the oldest underground rail system in the world, has added the Elisabeth Line at a cost of some £14 billion; China now has the largest high-speed rail system in the world. All these developments rely on the safe performance of steel rails, which suffer from two primary damage mechanisms, rolling-contact fatigue caused essentially by repeated contact stresses with the wheel, and a variety of wear mechanisms. Factors such as weldability are important, given that all modern rails are continuous. This review deals with the detailed physical-metallurgy of rail steels, including alloy design, microstructure, variety and choice, and damage mechanisms.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":37.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000823/pdfft?md5=4770904fcfcb7621826a133e54d248c7&pid=1-s2.0-S0079642524000823-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141314981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1