Macroscopic modeling of urban flood inundation through areal-averaged Shallow-Water-Equations

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES Advances in Water Resources Pub Date : 2024-06-14 DOI:10.1016/j.advwatres.2024.104755
Alok Kumar, Gourabananda Pahar
{"title":"Macroscopic modeling of urban flood inundation through areal-averaged Shallow-Water-Equations","authors":"Alok Kumar,&nbsp;Gourabananda Pahar","doi":"10.1016/j.advwatres.2024.104755","DOIUrl":null,"url":null,"abstract":"<div><p>An areal-averaged form of classical Shallow-Water-Equations is developed in conjunction with Finite-Volume-Method for capturing sub-grid bed variation. The averaging mechanism treats sub-grid obstacles through depth-dependent-area-averaged porosity at the macroscopic level. This porosity assumes a binary distribution (0,1) for a resolution fine enough to treat bed-variation separately, resulting in convergence of the developed framework to classical form. An attempt has been made to incorporate the unresolved fine-scale flow-information (e.g., micro-scale and cross-scale interaction components) in terms of the macroscopic variables through a non-linear closure model. An augmented approximated Riemann solver incorporates varying source–sink terms within interfacial fluxes along with discontinuous porosity and bed variation. The model is applied to three test-cases ranging from wave-interaction with trapezoidal porous block to dam-break flows through obstacle(s) with varying grid configurations. The coarse-scale formulation, along with closure, produces a reasonably accurate solution with minimal computational overhead.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104755"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001428","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

An areal-averaged form of classical Shallow-Water-Equations is developed in conjunction with Finite-Volume-Method for capturing sub-grid bed variation. The averaging mechanism treats sub-grid obstacles through depth-dependent-area-averaged porosity at the macroscopic level. This porosity assumes a binary distribution (0,1) for a resolution fine enough to treat bed-variation separately, resulting in convergence of the developed framework to classical form. An attempt has been made to incorporate the unresolved fine-scale flow-information (e.g., micro-scale and cross-scale interaction components) in terms of the macroscopic variables through a non-linear closure model. An augmented approximated Riemann solver incorporates varying source–sink terms within interfacial fluxes along with discontinuous porosity and bed variation. The model is applied to three test-cases ranging from wave-interaction with trapezoidal porous block to dam-break flows through obstacle(s) with varying grid configurations. The coarse-scale formulation, along with closure, produces a reasonably accurate solution with minimal computational overhead.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过均方差浅水方程对城市洪水淹没进行宏观建模
结合有限体积法(Finite-Volume-Method)开发了一种经典浅水方程的面积平均形式,用于捕捉床层的次网格变化。平均机制通过宏观层面上与深度相关的面积平均孔隙度来处理次网格障碍。这种孔隙度假设为二元分布(0,1),分辨率足够精细,可以单独处理床层变化,从而使所开发的框架趋近于经典形式。通过非线性闭合模型,尝试将未解决的细尺度流动信息(如微尺度和跨尺度相互作用成分)纳入宏观变量。一个增强的近似黎曼求解器在界面通量中加入了不同的源汇项,以及不连续的孔隙度和床层变化。该模型应用于三个测试案例,从波浪与梯形多孔块体的相互作用到通过不同网格配置的障碍物的溃坝流。粗尺度公式和闭合方法以最小的计算开销获得了相当精确的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
期刊最新文献
Study on the effects of non-uniformity of microbial growth on permeability changes in porous media On transient qanat discharge in an unconfined aquifer underlain by a fractured aquifer An extension of the box method discrete fracture model (Box-DFM) to include low-permeable barriers with minimal additional degrees of freedom In search of non-stationary dependence between estuarine river discharge and storm surge based on large-scale climate teleconnections Numerical analysis of solute transport and longitudinal dispersion coefficients in vegetated flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1