Effect of impinging jet on rapid cooling of a miniature Joule-Thomson cryocooler: Experimental study of operating conditions

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-06-15 DOI:10.1016/j.ijrefrig.2024.06.017
{"title":"Effect of impinging jet on rapid cooling of a miniature Joule-Thomson cryocooler: Experimental study of operating conditions","authors":"","doi":"10.1016/j.ijrefrig.2024.06.017","DOIUrl":null,"url":null,"abstract":"<div><p>A miniature open-cycle Joule-Thomson (J-T) cryocooler possesses excellent potential for rapid cooling from ambient temperature to about 100 K within seconds. In this rapid cooling process, the interplay of the heat transfer process between the cryogenic fluid and the cold plate plays a crucial role, in addition to the J-T effect and the energy recovery within the heat exchanger of the cryocooler. The phase state of the impinging jet is determined by the jet temperature and has different heat transfer mechanism. To investigate this impinging jet behavior separately, an experimental system for the rapid cooling J-T cryocooler was set up and the jet temperature was measured besides other important parameters. The operating conditions, including the cylinder pressure, cylinder volume, ambient temperature, and the refrigerant, were studied orthogonal. It was observed that argon, compared to nitrogen, can be more rapidly throttled into its two-phase region within a second. However, nitrogen will perform better than argon in terms of cool-down time. This is attributed to the temperature difference between the jet and the cold plate, which significantly influences the boiling mode of the two-phase jet, and in turn affects the cryocooler's cooling rate. Nevertheless, due to the smaller heat transfer intensity of single-phase jet, the cool-down time of nitrogen deteriorates quickly at high ambient temperatures. Experimental results also revealed that the cooling rate of the cryocooler still can be enhanced even if cylinder pressure beyond its saturation curve, caused by the dynamic cooling process and the pressure drop within the finned tube.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002196","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A miniature open-cycle Joule-Thomson (J-T) cryocooler possesses excellent potential for rapid cooling from ambient temperature to about 100 K within seconds. In this rapid cooling process, the interplay of the heat transfer process between the cryogenic fluid and the cold plate plays a crucial role, in addition to the J-T effect and the energy recovery within the heat exchanger of the cryocooler. The phase state of the impinging jet is determined by the jet temperature and has different heat transfer mechanism. To investigate this impinging jet behavior separately, an experimental system for the rapid cooling J-T cryocooler was set up and the jet temperature was measured besides other important parameters. The operating conditions, including the cylinder pressure, cylinder volume, ambient temperature, and the refrigerant, were studied orthogonal. It was observed that argon, compared to nitrogen, can be more rapidly throttled into its two-phase region within a second. However, nitrogen will perform better than argon in terms of cool-down time. This is attributed to the temperature difference between the jet and the cold plate, which significantly influences the boiling mode of the two-phase jet, and in turn affects the cryocooler's cooling rate. Nevertheless, due to the smaller heat transfer intensity of single-phase jet, the cool-down time of nitrogen deteriorates quickly at high ambient temperatures. Experimental results also revealed that the cooling rate of the cryocooler still can be enhanced even if cylinder pressure beyond its saturation curve, caused by the dynamic cooling process and the pressure drop within the finned tube.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲击射流对微型焦耳-汤姆逊低温冷却器快速冷却的影响:工作条件实验研究
微型开式循环焦耳-汤姆森(J-T)低温冷却器具有在几秒钟内从环境温度快速冷却到约 100 K 的巨大潜力。在这一快速冷却过程中,除了 J-T 效应和低温冷却器热交换器内的能量回收外,低温流体和冷板之间的热传递过程的相互作用也起着至关重要的作用。撞击射流的相态由射流温度决定,并具有不同的传热机制。为了分别研究这种撞击射流行为,我们建立了一个快速冷却 J-T 低温冷却器实验系统,并测量了射流温度和其他重要参数。对气缸压力、气缸容积、环境温度和制冷剂等运行条件进行了正交研究。研究发现,与氮气相比,氩气能在一秒钟内更快地进入两相区。不过,就冷却时间而言,氮气比氩气更好。这是由于射流和冷板之间的温度差极大地影响了两相射流的沸腾模式,进而影响了低温冷却器的冷却速度。然而,由于单相射流的传热强度较小,在环境温度较高时,氮气的冷却时间会迅速缩短。实验结果还表明,由于动态冷却过程和翅片管内压降的作用,即使气缸压力超过饱和曲线,低温冷却器的冷却速率仍然可以提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
期刊最新文献
Essential improvement of the JT cryocooler working at liquid helium temperature for space: Efficient and lightweight Editorial Board Simulation of an operation of nested Halbach cylinder arrays in regenerative magnetic cooling cycles: The way to maximum thermal span Experimental study and correlation of critical parameters for three binary mixtures containing R290 and hydrofluoroolefins Modelling energy consumption in a Paris supermarket to reduce energy use and greenhouse gas emissions using EnergyPlus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1