Giulia Varriano , Vittoria Nardone , Simona Correra, Francesco Mercaldo, Antonella Santone
{"title":"An automatic radiomic-based approach for disease localization: A pilot study on COVID-19","authors":"Giulia Varriano , Vittoria Nardone , Simona Correra, Francesco Mercaldo, Antonella Santone","doi":"10.1016/j.compmedimag.2024.102411","DOIUrl":null,"url":null,"abstract":"<div><p>Radiomics is an innovative field in Personalized Medicine to help medical specialists in diagnosis and prognosis. Mainly, the application of Radiomics to medical images requires the definition and delimitation of the Region Of Interest (ROI) on the medical image to extract radiomic features. The aim of this preliminary study is to define an approach that automatically detects the specific areas indicative of a particular disease and examines them to minimize diagnostic errors associated with false positives and false negatives. This approach aims to create a <span><math><mrow><mi>n</mi><mi>x</mi><mi>n</mi></mrow></math></span> grid on the DICOM image sequence and each cell in the matrix is associated with a region from which radiomic features can be extracted.</p><p>The proposed procedure uses the Model Checking technique and produces as output the medical diagnosis of the patient, i.e., whether the patient under analysis is affected or not by a specific disease. Furthermore, the matrix-based method also localizes where appears the disease marks. To evaluate the performance of the proposed methodology, a case study on COVID-19 disease is used. Both results on disease identification and localization seem very promising. Furthermore, this proposed approach yields better results compared to methods based on the extraction of features using the whole image as a single ROI, as evidenced by improvements in Accuracy and especially Recall. Our approach supports the advancement of knowledge, interoperability and trust in the software tool, fostering collaboration among doctors, staff and Radiomics.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"116 ","pages":"Article 102411"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000880","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Radiomics is an innovative field in Personalized Medicine to help medical specialists in diagnosis and prognosis. Mainly, the application of Radiomics to medical images requires the definition and delimitation of the Region Of Interest (ROI) on the medical image to extract radiomic features. The aim of this preliminary study is to define an approach that automatically detects the specific areas indicative of a particular disease and examines them to minimize diagnostic errors associated with false positives and false negatives. This approach aims to create a grid on the DICOM image sequence and each cell in the matrix is associated with a region from which radiomic features can be extracted.
The proposed procedure uses the Model Checking technique and produces as output the medical diagnosis of the patient, i.e., whether the patient under analysis is affected or not by a specific disease. Furthermore, the matrix-based method also localizes where appears the disease marks. To evaluate the performance of the proposed methodology, a case study on COVID-19 disease is used. Both results on disease identification and localization seem very promising. Furthermore, this proposed approach yields better results compared to methods based on the extraction of features using the whole image as a single ROI, as evidenced by improvements in Accuracy and especially Recall. Our approach supports the advancement of knowledge, interoperability and trust in the software tool, fostering collaboration among doctors, staff and Radiomics.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.