Analysis of micropolar elastic multi-laminated composite and its application to bioceramic materials for bone reconstruction

IF 3.6 3区 生物学 Q1 BIOLOGY Interface Focus Pub Date : 2024-06-01 DOI:10.1098/rsfs.2023.0064
R. Rodríguez‐Ramos, Y. Espinosa‐Almeyda, D. Guinovart-Sanjuán, H. Camacho‐Montes, P. Rodríguez-Bermúdez, H. Brito-Santana, J. Otero, F. Sabina, Rodríguez-Bermúdez Camacho-Montes H, J. Otero
{"title":"Analysis of micropolar elastic multi-laminated composite and its application to bioceramic materials for bone reconstruction","authors":"R. Rodríguez‐Ramos, Y. Espinosa‐Almeyda, D. Guinovart-Sanjuán, H. Camacho‐Montes, P. Rodríguez-Bermúdez, H. Brito-Santana, J. Otero, F. Sabina, Rodríguez-Bermúdez Camacho-Montes H, J. Otero","doi":"10.1098/rsfs.2023.0064","DOIUrl":null,"url":null,"abstract":"The asymptotic homogenization method is applied to characterize the effective behaviour of periodic multi-laminated micropolar elastic heterogeneous composites under perfect contact conditions. The local problem formulations and the analytical expressions for the effective stiffness and torque coefficients are derived for the centrosymmetric case. One of the main findings in this work is the analysis of the rotations effect of the layers’ constitutive properties on the mechanical response of bi-laminated composites. The effects of microstructure and interfacial interactions on the composite’s mechanical behaviour are captured through the independent effective moduli. Comparisons with the classical elastic case show the approach validation. Some numerical examples are shown. Furthermore, considering the micropolar media’s prevalence in bio-inspired systems, the model’s applicability is evaluated for reconstructing bone fractures using multi-laminated biocomposites. An important finding in this bio-inspired simulation is related to the analysis of a periodic bi-laminated micropolar composite whose isotropic constituents are a bioceramic material and a compact bone. This artificial bio-inspired material should integrate with host tissue to support cell growth and be stable and compatible. These characteristics are crucial in the enhancement of the fractured bone.","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0064","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The asymptotic homogenization method is applied to characterize the effective behaviour of periodic multi-laminated micropolar elastic heterogeneous composites under perfect contact conditions. The local problem formulations and the analytical expressions for the effective stiffness and torque coefficients are derived for the centrosymmetric case. One of the main findings in this work is the analysis of the rotations effect of the layers’ constitutive properties on the mechanical response of bi-laminated composites. The effects of microstructure and interfacial interactions on the composite’s mechanical behaviour are captured through the independent effective moduli. Comparisons with the classical elastic case show the approach validation. Some numerical examples are shown. Furthermore, considering the micropolar media’s prevalence in bio-inspired systems, the model’s applicability is evaluated for reconstructing bone fractures using multi-laminated biocomposites. An important finding in this bio-inspired simulation is related to the analysis of a periodic bi-laminated micropolar composite whose isotropic constituents are a bioceramic material and a compact bone. This artificial bio-inspired material should integrate with host tissue to support cell growth and be stable and compatible. These characteristics are crucial in the enhancement of the fractured bone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微极弹性多层复合材料分析及其在骨重建生物陶瓷材料中的应用
应用渐近均质化方法描述了完全接触条件下周期性多层微波弹性异质复合材料的有效行为。针对中心对称情况,推导出了局部问题公式以及有效刚度和扭矩系数的分析表达式。这项研究的主要发现之一是分析了层构成特性的旋转效应对双层复合材料机械响应的影响。通过独立的有效模量,可以捕捉到微观结构和界面相互作用对复合材料机械性能的影响。与经典弹性情况的比较显示了该方法的有效性。文中还展示了一些数值示例。此外,考虑到微极性介质在生物启发系统中的普遍性,还评估了该模型对使用多层生物复合材料重建骨折的适用性。该生物启发模拟的一个重要发现与周期性双层微极复合材料的分析有关,该复合材料的各向同性成分是生物陶瓷材料和紧密骨。这种人工生物启发材料应与宿主组织结合,支持细胞生长,并具有稳定性和兼容性。这些特性对骨折骨的修复至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
期刊最新文献
Capacity building in porous materials research for sustainable energy applications. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative. Creating sustainable capacity for river science in the Congo basin through the CRuHM project. Doctoral training to support sustainable soil geochemistry research in Africa. Materials modelling in the University of Limpopo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1