{"title":"Discovery and engineering of ChCas12b for precise genome editing","authors":"","doi":"10.1016/j.scib.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><div>Many clustered regularly interspaced short palindromic repeat and CRISPR-associated protein 12b (CRISPR-Cas12b) nucleases have been computationally identified, yet their potential for genome editing remains largely unexplored. In this study, we conducted a GFP-activation assay screening 13 Cas12b nucleases for mammalian genome editing, identifying five active candidates. Candidatus hydrogenedentes Cas12b (ChCas12b) was found to recognize a straightforward WTN (W = T or A) proto-spacer adjacent motif (PAM), thereby dramatically expanding the targeting scope. Upon optimization of the single guide RNA (sgRNA) scaffold, ChCas12b exhibited activity comparable to SpCas9 across a panel of nine endogenous loci. Additionally, we identified nine mutations enhancing ChCas12b specificity. More importantly, we demonstrated that both ChCas12b and its high-fidelity variant, ChCas12b-D496A, enabled allele-specific disruption of genes harboring single nucleotide polymorphisms (SNPs). These data position ChCas12b and its high-fidelity counterparts as promising tools for both fundamental research and therapeutic applications.</div></div>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":null,"pages":null},"PeriodicalIF":18.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095927324004080","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Many clustered regularly interspaced short palindromic repeat and CRISPR-associated protein 12b (CRISPR-Cas12b) nucleases have been computationally identified, yet their potential for genome editing remains largely unexplored. In this study, we conducted a GFP-activation assay screening 13 Cas12b nucleases for mammalian genome editing, identifying five active candidates. Candidatus hydrogenedentes Cas12b (ChCas12b) was found to recognize a straightforward WTN (W = T or A) proto-spacer adjacent motif (PAM), thereby dramatically expanding the targeting scope. Upon optimization of the single guide RNA (sgRNA) scaffold, ChCas12b exhibited activity comparable to SpCas9 across a panel of nine endogenous loci. Additionally, we identified nine mutations enhancing ChCas12b specificity. More importantly, we demonstrated that both ChCas12b and its high-fidelity variant, ChCas12b-D496A, enabled allele-specific disruption of genes harboring single nucleotide polymorphisms (SNPs). These data position ChCas12b and its high-fidelity counterparts as promising tools for both fundamental research and therapeutic applications.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.