Pub Date : 2025-01-15Epub Date: 2024-08-08DOI: 10.1016/j.scib.2024.08.004
Yajin Wen, Yongye Huang, Zhenwei Xia, Min Wu, Yinghao Zhi
{"title":"Zosurabalpin like petrichor: a novel antibiotic class with unprecedented target towards Acinetobacter baumannii.","authors":"Yajin Wen, Yongye Huang, Zhenwei Xia, Min Wu, Yinghao Zhi","doi":"10.1016/j.scib.2024.08.004","DOIUrl":"10.1016/j.scib.2024.08.004","url":null,"abstract":"","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":"7-9"},"PeriodicalIF":18.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15Epub Date: 2024-09-26DOI: 10.1016/j.scib.2024.09.030
Jun Gao, Ivan M Khaymovich, Xiao-Wei Wang, Ze-Sheng Xu, Adrian Iovan, Govind Krishna, Jiayidaer Jieensi, Andrea Cataldo, Alexander V Balatsky, Val Zwiller, Ali W Elshaari
The mobility edge (ME) is a crucial concept in understanding localization physics, marking the critical transition between extended and localized states in the energy spectrum. Anderson localization scaling theory predicts the absence of ME in lower dimensional systems. Hence, the search for exact MEs, particularly for single particles in lower dimensions, has recently garnered significant interest in both theoretical and experimental studies, resulting in notable progress. However, several open questions remain, including the possibility of a single system exhibiting multiple MEs and the continual existence of extended states, even within the strong disorder domain. Here, we provide experimental evidence to address these questions by utilizing a quasiperiodic mosaic lattice with meticulously designed nanophotonic circuits. Our observations demonstrate the coexistence of both extended and localized states in lattices with broken duality symmetry and varying modulation periods. By single-site injection and scanning the disorder level, we could approximately probe the ME of the modulated lattice. These results corroborate recent theoretical predictions, introduce a new avenue for investigating ME physics, and offer inspiration for further exploration of ME physics in the quantum regime using hybrid integrated photonic devices.
{"title":"Probing multi-mobility edges in quasiperiodic mosaic lattices.","authors":"Jun Gao, Ivan M Khaymovich, Xiao-Wei Wang, Ze-Sheng Xu, Adrian Iovan, Govind Krishna, Jiayidaer Jieensi, Andrea Cataldo, Alexander V Balatsky, Val Zwiller, Ali W Elshaari","doi":"10.1016/j.scib.2024.09.030","DOIUrl":"10.1016/j.scib.2024.09.030","url":null,"abstract":"<p><p>The mobility edge (ME) is a crucial concept in understanding localization physics, marking the critical transition between extended and localized states in the energy spectrum. Anderson localization scaling theory predicts the absence of ME in lower dimensional systems. Hence, the search for exact MEs, particularly for single particles in lower dimensions, has recently garnered significant interest in both theoretical and experimental studies, resulting in notable progress. However, several open questions remain, including the possibility of a single system exhibiting multiple MEs and the continual existence of extended states, even within the strong disorder domain. Here, we provide experimental evidence to address these questions by utilizing a quasiperiodic mosaic lattice with meticulously designed nanophotonic circuits. Our observations demonstrate the coexistence of both extended and localized states in lattices with broken duality symmetry and varying modulation periods. By single-site injection and scanning the disorder level, we could approximately probe the ME of the modulated lattice. These results corroborate recent theoretical predictions, introduce a new avenue for investigating ME physics, and offer inspiration for further exploration of ME physics in the quantum regime using hybrid integrated photonic devices.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":"58-63"},"PeriodicalIF":18.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15Epub Date: 2024-09-20DOI: 10.1016/j.scib.2024.09.024
Hengqing Shen, Likun Xue, Gen Zhang, Yujiao Zhu, Min Zhao, Xuelian Zhong, Yanqiu Nie, Jinghao Tang, Yuhong Liu, Qi Yuan, Huiwang Gao, Tao Wang, Wenxing Wang
Elevated concentrations of formaldehyde and other carbonyl compounds are frequently observed in the marine atmosphere but are often significantly underestimated by atmospheric models. To evaluate the potential impact of marine sources on atmospheric formaldehyde, high-resolution measurements were conducted at a coastal site (∼15 m from the sea) during the summer in Qingdao, China. Observed formaldehyde levels averaged 2.4 ± 0.9 ppbv (1 ppbv = 10-9 L L-1), with peaks reaching 6.8 ppbv. Backward trajectories indicate that formaldehyde concentrations remained high in marine air masses. Formaldehyde exhibited weak correlations with primary pollutants such as NO and CO but showed strong correlations with marine tracers, notably methyl ethyl ketone and 1-butene. Chamber experiments confirmed that the photodecomposition of Enteromorpha released large amounts of formaldehyde and marine tracer species. When normalized to acetylene, the levels of formaldehyde, 1-butene, and MEK increased by factors of 3.8, 8.1, and 3.5, respectively. Results from an observation-based chemical box model simulation, which utilizes the Master Chemical Mechanism (MCM), revealed that formaldehyde contributes 56% to the primary source of HO2 radicals, while neglecting formaldehyde chemistry would lead to a 15% reduction in coastal ozone production rates. This study interlinks oceanic biology and atmospheric chemistry, advancing the understanding of the ocean's role as a significant source of organic compounds and its contribution to carbon cycling.
{"title":"Marine sources of formaldehyde in the coastal atmosphere.","authors":"Hengqing Shen, Likun Xue, Gen Zhang, Yujiao Zhu, Min Zhao, Xuelian Zhong, Yanqiu Nie, Jinghao Tang, Yuhong Liu, Qi Yuan, Huiwang Gao, Tao Wang, Wenxing Wang","doi":"10.1016/j.scib.2024.09.024","DOIUrl":"10.1016/j.scib.2024.09.024","url":null,"abstract":"<p><p>Elevated concentrations of formaldehyde and other carbonyl compounds are frequently observed in the marine atmosphere but are often significantly underestimated by atmospheric models. To evaluate the potential impact of marine sources on atmospheric formaldehyde, high-resolution measurements were conducted at a coastal site (∼15 m from the sea) during the summer in Qingdao, China. Observed formaldehyde levels averaged 2.4 ± 0.9 ppbv (1 ppbv = 10<sup>-9</sup> L L<sup>-1</sup>), with peaks reaching 6.8 ppbv. Backward trajectories indicate that formaldehyde concentrations remained high in marine air masses. Formaldehyde exhibited weak correlations with primary pollutants such as NO and CO but showed strong correlations with marine tracers, notably methyl ethyl ketone and 1-butene. Chamber experiments confirmed that the photodecomposition of Enteromorpha released large amounts of formaldehyde and marine tracer species. When normalized to acetylene, the levels of formaldehyde, 1-butene, and MEK increased by factors of 3.8, 8.1, and 3.5, respectively. Results from an observation-based chemical box model simulation, which utilizes the Master Chemical Mechanism (MCM), revealed that formaldehyde contributes 56% to the primary source of HO<sub>2</sub> radicals, while neglecting formaldehyde chemistry would lead to a 15% reduction in coastal ozone production rates. This study interlinks oceanic biology and atmospheric chemistry, advancing the understanding of the ocean's role as a significant source of organic compounds and its contribution to carbon cycling.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":"96-103"},"PeriodicalIF":18.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aqueous zinc metal batteries (AZMBs) have received widespread attention for large-scale sustainable energy storage due to their low toxicity, safety, cost-effectiveness. However, the technology and industrialization of AZMBs are greatly plagued by issues of Zn anode such as persistent dendrites and parasitic side reactions, resulting in rapid capacity degradation or battery failure. Electrochemically or chemically in-situ interfacial protection layers have very good self-adaption features for stability and reversibility of Zn anodes, which can also be well matched to current battery manufacturing. However, the in-situ interfacial strategies are far from the practical design for effective Zn anodes. Therefore, a targeted academic discussion that serves the development of this field is very urgent. Herein, the comprehensive insights on electrochemically and chemically in-situ interfacial protection layers for Zn anode were proposed in this review. It showcased a systematic summary of research advances, followed by detailed discussions on electrochemically and chemically in-situ interfacial protection strategies. More importantly, several crucial issues facing in-situ interfacial protection strategies have been further put forward. The final section particularly highlighted a systematic and rigorous scheme for precise designing highly stable and reversible in-situ interface for practical zinc anodes.
{"title":"Electrochemically and chemically in-situ interfacial protection layers towards stable and reversible Zn anodes.","authors":"Yuqing Yang, Liping Qin, Qiong He, Chengjie Yin, Yongpeng Lei, Shuquan Liang, Guozhao Fang","doi":"10.1016/j.scib.2024.10.025","DOIUrl":"10.1016/j.scib.2024.10.025","url":null,"abstract":"<p><p>Aqueous zinc metal batteries (AZMBs) have received widespread attention for large-scale sustainable energy storage due to their low toxicity, safety, cost-effectiveness. However, the technology and industrialization of AZMBs are greatly plagued by issues of Zn anode such as persistent dendrites and parasitic side reactions, resulting in rapid capacity degradation or battery failure. Electrochemically or chemically in-situ interfacial protection layers have very good self-adaption features for stability and reversibility of Zn anodes, which can also be well matched to current battery manufacturing. However, the in-situ interfacial strategies are far from the practical design for effective Zn anodes. Therefore, a targeted academic discussion that serves the development of this field is very urgent. Herein, the comprehensive insights on electrochemically and chemically in-situ interfacial protection layers for Zn anode were proposed in this review. It showcased a systematic summary of research advances, followed by detailed discussions on electrochemically and chemically in-situ interfacial protection strategies. More importantly, several crucial issues facing in-situ interfacial protection strategies have been further put forward. The final section particularly highlighted a systematic and rigorous scheme for precise designing highly stable and reversible in-situ interface for practical zinc anodes.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":"104-124"},"PeriodicalIF":18.8,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}