Introducing Ce ions and oxygen vacancies into VO2 nanostructures with high specific surface area for efficient aqueous Zn-ion storage

Mingying Bao , Zhengchunyu Zhang , Xuguang An , Baojuan Xi , Shenglin Xiong
{"title":"Introducing Ce ions and oxygen vacancies into VO2 nanostructures with high specific surface area for efficient aqueous Zn-ion storage","authors":"Mingying Bao ,&nbsp;Zhengchunyu Zhang ,&nbsp;Xuguang An ,&nbsp;Baojuan Xi ,&nbsp;Shenglin Xiong","doi":"10.1016/j.chphma.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>Positive electrodes play a decisive role in exploring the Zn<sup>2+</sup> storage mechanism and improving the electrochemical performance of aqueous Zn-ion batteries (AZIBs). Feasible design and preparation of cathode materials have been crucial for AZIBs in recent years. Herein, taking the advantage of the tunnel structure of VO<sub>2</sub>, which can withstand volume change during charging/discharging, VO<sub>2</sub> doped with Ce ions is synthesized by a simple one-step hydrothermal method and oxygen vacancies are synchronously generated during synthesis. It delivers a capacity of 158.5 mAh g<sup>−</sup><sup>1</sup> at the current density of 5 A g<sup>−</sup><sup>1</sup> after 1000 cycles and exhibits an excellent energy density of 312.8 Wh kg<sup>−</sup><sup>1</sup> at the power density of 142 W kg<sup>−</sup><sup>1</sup>. The structural modification and prospect of enhancing its conductivity by doping with rare-earth metals and introducing oxygen vacancies may aid in improving the stability of AZIBs in the future.</div></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"4 1","pages":"Pages 56-63"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571524000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Positive electrodes play a decisive role in exploring the Zn2+ storage mechanism and improving the electrochemical performance of aqueous Zn-ion batteries (AZIBs). Feasible design and preparation of cathode materials have been crucial for AZIBs in recent years. Herein, taking the advantage of the tunnel structure of VO2, which can withstand volume change during charging/discharging, VO2 doped with Ce ions is synthesized by a simple one-step hydrothermal method and oxygen vacancies are synchronously generated during synthesis. It delivers a capacity of 158.5 mAh g1 at the current density of 5 A g1 after 1000 cycles and exhibits an excellent energy density of 312.8 Wh kg1 at the power density of 142 W kg1. The structural modification and prospect of enhancing its conductivity by doping with rare-earth metals and introducing oxygen vacancies may aid in improving the stability of AZIBs in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在具有高比表面积的 VO2 纳米结构中引入 Ce 离子和 O2 缺陷,实现 Zn 离子的高效水溶液储存
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
One-step solvothermal preparation of Fe-doped Ni0.85Se/NF: An efficient catalyst for the oxygen evolution reaction Fullerene nanosheets for surface-enhanced Raman spectroscopy Introducing Ce ions and oxygen vacancies into VO2 nanostructures with high specific surface area for efficient aqueous Zn-ion storage Editorial for the special issue “Energy Material Chemistry” Phase engineering of H/T-Nb2O5 homojunction for enhanced lithium-ion storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1