The cumulative plastic deformation demand for buckling restrained braces imposed by the strong motions in the 2023 Türkiye earthquake sequence

{"title":"The cumulative plastic deformation demand for buckling restrained braces imposed by the strong motions in the 2023 Türkiye earthquake sequence","authors":"","doi":"10.1016/j.eqrea.2024.100313","DOIUrl":null,"url":null,"abstract":"<div><div>The Türkiye earthquake sequence on February 6, 2023, was featured by the closely located earthquake doublet of <em>M</em><sub>w</sub> 7.8 and <em>M</em><sub>w</sub> 7.5. The consequent strong ground motions are supposed to be able to impose high demands on the ultra-low-cycle fatigue performance of metallic dampers in buildings, including the widely used buckling restrained braces. This study evaluates the cumulative plastic deformation (<em>CPD</em>) demands on buckling-restrained braces (BRBs) in multi-story buildings imposed by the strong ground motions in the 2023 Türkiye earthquake doublet. Thirty-two records of the highest peak ground accelerations were selected from the strong motion database. Among them, eight captured the ground motions during both events, and the rest only captured the shaking of either of the events. The <em>CPD</em> demands on the BRBs in reinforced concrete frames with various fundamental periods, brace-to-frame stiffness ratios, and BRB ductility ratio are calculated by nonlinear time history analyses and are summarized in the form of enveloped spectra of <em>CPD</em> ratios at constant ductility. The results show that the <em>CPD</em> demands on BRBs increase with smaller brace-to-frame stiffness ratios and larger BRB ductility ratios. The enveloped <em>CPD</em> demands are several hundreds of times the nominal yield deformation of the BRB, which are much higher than the <em>CPD</em> demands for the calibration tests of BRBs stipulated by AISC 341 in the US.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100313"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Türkiye earthquake sequence on February 6, 2023, was featured by the closely located earthquake doublet of Mw 7.8 and Mw 7.5. The consequent strong ground motions are supposed to be able to impose high demands on the ultra-low-cycle fatigue performance of metallic dampers in buildings, including the widely used buckling restrained braces. This study evaluates the cumulative plastic deformation (CPD) demands on buckling-restrained braces (BRBs) in multi-story buildings imposed by the strong ground motions in the 2023 Türkiye earthquake doublet. Thirty-two records of the highest peak ground accelerations were selected from the strong motion database. Among them, eight captured the ground motions during both events, and the rest only captured the shaking of either of the events. The CPD demands on the BRBs in reinforced concrete frames with various fundamental periods, brace-to-frame stiffness ratios, and BRB ductility ratio are calculated by nonlinear time history analyses and are summarized in the form of enveloped spectra of CPD ratios at constant ductility. The results show that the CPD demands on BRBs increase with smaller brace-to-frame stiffness ratios and larger BRB ductility ratios. The enveloped CPD demands are several hundreds of times the nominal yield deformation of the BRB, which are much higher than the CPD demands for the calibration tests of BRBs stipulated by AISC 341 in the US.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2023 年土耳其地震序列中的强烈运动对屈曲约束支撑的累积塑性变形要求
2023 年 2 月 6 日发生的图尔基耶地震序列的特点是紧邻 7.8 级和 7.5 级地震。随之而来的强烈地面运动应该会对建筑物中金属阻尼器的超低周期疲劳性能提出很高的要求,其中包括广泛使用的屈曲约束支撑。本研究评估了 2023 年图尔基耶双重地震中强地动对多层建筑中屈曲约束支撑(BRB)的累积塑性变形(CPD)要求。从强烈地震数据库中选取了 32 条最高峰值地面加速度记录。其中,8 条记录捕捉了两个事件中的地面运动,其余记录只捕捉了其中一个事件的震动。通过非线性时间历程分析,计算了不同基本周期、支撑与框架刚度比以及BRB延性比的钢筋混凝土框架对BRB的CPD需求,并以CPD比包络谱的形式总结了恒定延性下的CPD需求。结果表明,当支撑与框架的刚度比越小,BRB 的延性比越大时,对 BRB 的 CPD 需求就越大。包络 CPD 要求是 BRB 名义屈服变形的数百倍,远高于美国 AISC 341 规定的 BRB 校准测试 CPD 要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Site classification methodology using support vector machine: A study Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods Data merging methods for S-wave velocity and azimuthal anisotropy from different regions Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1