Filipe Giovanini Varejão , Lucas Veríssimo Warren , Mariza Gomes Rodrigues , Mario Luis Assine , Marcello Guimarães Simões
{"title":"Origin and significance of macroscopic organic aggregates from the lacustrine Aptian Crato Konservat-Lagerstätte","authors":"Filipe Giovanini Varejão , Lucas Veríssimo Warren , Mariza Gomes Rodrigues , Mario Luis Assine , Marcello Guimarães Simões","doi":"10.1016/j.sedgeo.2024.106692","DOIUrl":null,"url":null,"abstract":"<div><p>The Crato <em>Konservat-Lagerstätte</em> is one of the main Mesozoic fossil sites from Gondwana, recording a wide diversity of terrestrial and non-marine aquatic fossils of great paleobiological and evolutionary significance. This conservation deposit is recorded in a 9 m-thick interval of laminite, microbialite, and grainstone deposited in a lake system with variable water level, alternating moments of hypersaline and freshwater conditions. Despite numerous studies describing new species of plants, arthropods, fish, pterosaurs, birds, and many others, there remains a significant gap in our understanding of the most common and archetypal fossils, which are the rod-shaped macrofossils found on bedding surfaces in distinct stratigraphic intervals of the Crato <em>Konservat-Lagerstätte</em>. The rod-shaped macrofossils are up to 1.6 cm-long and 0.1 cm-wide, straight to curved compressions that preserve pyritized microfossils. Here we interpret the rod-shaped macrofossils as macroscopic organic aggregates that sank into the lakebed in a process called lake snow. During high organic productivity periods in the epilimnion, planktonic organisms thrived and produced exopolymers responsible for aggregation. Their concentrations in the limestone bedding planes reflect intensity of lake snow and environmental seasonality. Aggregates are prolate particles that are commonly oriented, suggesting their transport as bedload for short distances, which was facilitated by biostabilization by microbes and their exopolymers. Finally, pyritization was mediated by microbial communities living in the lakebed.</p></div>","PeriodicalId":21575,"journal":{"name":"Sedimentary Geology","volume":"470 ","pages":"Article 106692"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentary Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0037073824001155","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Crato Konservat-Lagerstätte is one of the main Mesozoic fossil sites from Gondwana, recording a wide diversity of terrestrial and non-marine aquatic fossils of great paleobiological and evolutionary significance. This conservation deposit is recorded in a 9 m-thick interval of laminite, microbialite, and grainstone deposited in a lake system with variable water level, alternating moments of hypersaline and freshwater conditions. Despite numerous studies describing new species of plants, arthropods, fish, pterosaurs, birds, and many others, there remains a significant gap in our understanding of the most common and archetypal fossils, which are the rod-shaped macrofossils found on bedding surfaces in distinct stratigraphic intervals of the Crato Konservat-Lagerstätte. The rod-shaped macrofossils are up to 1.6 cm-long and 0.1 cm-wide, straight to curved compressions that preserve pyritized microfossils. Here we interpret the rod-shaped macrofossils as macroscopic organic aggregates that sank into the lakebed in a process called lake snow. During high organic productivity periods in the epilimnion, planktonic organisms thrived and produced exopolymers responsible for aggregation. Their concentrations in the limestone bedding planes reflect intensity of lake snow and environmental seasonality. Aggregates are prolate particles that are commonly oriented, suggesting their transport as bedload for short distances, which was facilitated by biostabilization by microbes and their exopolymers. Finally, pyritization was mediated by microbial communities living in the lakebed.
期刊介绍:
Sedimentary Geology is a journal that rapidly publishes high quality, original research and review papers that cover all aspects of sediments and sedimentary rocks at all spatial and temporal scales. Submitted papers must make a significant contribution to the field of study and must place the research in a broad context, so that it is of interest to the diverse, international readership of the journal. Papers that are largely descriptive in nature, of limited scope or local geographical significance, or based on limited data will not be considered for publication.