Polyphenol-based photothermal nanoparticles with sprayable capability for self-regulation of microenvironment to accelerate diabetic wound healing

Q1 Medicine Engineered regeneration Pub Date : 2024-12-01 DOI:10.1016/j.engreg.2024.05.003
Xiuhong Huang , Meimei Fu , Min Lu , Xiaoxian Wu , Weiqian David Hong , Xiaoying Wang , Panpan Wu , Keke Wu
{"title":"Polyphenol-based photothermal nanoparticles with sprayable capability for self-regulation of microenvironment to accelerate diabetic wound healing","authors":"Xiuhong Huang ,&nbsp;Meimei Fu ,&nbsp;Min Lu ,&nbsp;Xiaoxian Wu ,&nbsp;Weiqian David Hong ,&nbsp;Xiaoying Wang ,&nbsp;Panpan Wu ,&nbsp;Keke Wu","doi":"10.1016/j.engreg.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Current treatments for diabetic wounds have some curative effect, but the process is complicated and lack user-friendly wound dressings. Nanozymes have gained significant attention for wound healing due to their striking merits. Herein, we have developed a novel sprayable tannin acid-cobalt coordination nanozyme (TACo) for diabetic wound healing. TACo nanozyme offers a convenient and efficient methods by spraying directly onto wounds surface, reducing infection risk by avoiding direct contact. Notably, its antioxidant properties contribute to scavenging the reactive oxygen species (ROS), alleviating oxidative stress and inflammation of wound microenvironment. Additionally, TACo nanozyme could promote cell survival and multiplication, which is crucial for the wound healing process. Importantly, TACo nanozyme facilitates angiogenesis by enhancing cell viability, migration, and tube formation. The unique coordination between metal and phenolic components confers pH-responsive cobalt ion and TA release properties, avoiding secondary damage during the wound cleaning. This unique composition seamlessly integrates photothermal antibacterial therapy, inflammatory microenvironment management, supporting for angiogenesis, and effective promotion of extracellular matrix production sequentially by harnessing the acidic pH environment of diabetic wounds. In conclusion, the development of a sprayable TACo nanozyme presents a promising therapeutic approach for the treatment of diabetic wounds, addressing the complexities of current treatments and providing a user-friendly application method.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 4","pages":"Pages 505-520"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138124000331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Current treatments for diabetic wounds have some curative effect, but the process is complicated and lack user-friendly wound dressings. Nanozymes have gained significant attention for wound healing due to their striking merits. Herein, we have developed a novel sprayable tannin acid-cobalt coordination nanozyme (TACo) for diabetic wound healing. TACo nanozyme offers a convenient and efficient methods by spraying directly onto wounds surface, reducing infection risk by avoiding direct contact. Notably, its antioxidant properties contribute to scavenging the reactive oxygen species (ROS), alleviating oxidative stress and inflammation of wound microenvironment. Additionally, TACo nanozyme could promote cell survival and multiplication, which is crucial for the wound healing process. Importantly, TACo nanozyme facilitates angiogenesis by enhancing cell viability, migration, and tube formation. The unique coordination between metal and phenolic components confers pH-responsive cobalt ion and TA release properties, avoiding secondary damage during the wound cleaning. This unique composition seamlessly integrates photothermal antibacterial therapy, inflammatory microenvironment management, supporting for angiogenesis, and effective promotion of extracellular matrix production sequentially by harnessing the acidic pH environment of diabetic wounds. In conclusion, the development of a sprayable TACo nanozyme presents a promising therapeutic approach for the treatment of diabetic wounds, addressing the complexities of current treatments and providing a user-friendly application method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多酚的光热纳米颗粒具有可喷洒功能,可自我调节微环境以加速糖尿病伤口愈合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
期刊最新文献
Asymmetric porous composite hydrogel patch for microenvironment-adapted repair of contaminated abdominal wall defects Novel injectable composite incorporating denosumab promotes bone regeneration via bone homeostasis regulation Bone improvement in osteoporotic rabbits using CoCrMo implants Polyphenol-based photothermal nanoparticles with sprayable capability for self-regulation of microenvironment to accelerate diabetic wound healing Corrigendum to “The Artificial Disc Nucleus and Other Strategies for Replacement of the Nucleus Pulposus: Past, Present and Future Designs for an Emerging Surgical Solution” [Engineered Regeneration 5(2024), 269-281]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1