Boosting charge transfer promotes photocatalytic peroxymonosulfate activation of S-doped CuBi2O4 nanorods for ciprofloxacin degradation: Key role of Ov–Cu–S and mechanism insight
Xianzhong Bu , Jiaming Li , Jin Wang , Yuan Li , Gaoke Zhang
{"title":"Boosting charge transfer promotes photocatalytic peroxymonosulfate activation of S-doped CuBi2O4 nanorods for ciprofloxacin degradation: Key role of Ov–Cu–S and mechanism insight","authors":"Xianzhong Bu , Jiaming Li , Jin Wang , Yuan Li , Gaoke Zhang","doi":"10.1016/j.cej.2024.153075","DOIUrl":null,"url":null,"abstract":"<div><p>The regulation of the metal–oxygen tetrahedron active center in spinel catalysts is crucial for enhancing the photocatalytic activation of peroxymonosulfate (PMS) to degrade organic pollutants. Herein, S−doped CuBi<sub>2</sub>O<sub>4</sub> (CBOS) catalysts with surface oxygen vacancies (O<sub>v</sub>) were prepared via a one-step hydrothermal method. The cycling of Cu(I)/Cu(II) and the trapping of photogenerated electrons by O<sub>v</sub> significantly enhance the migration of photogenerated carriers. Density functional theory (DFT) calculations revealed that the synergistic effect of S doping and O<sub>v</sub> successfully modulated the charge distribution around the Cu site in Cu−O tetrahedron. Furthermore, the exceptional adsorption and activation abilities of O<sub>v</sub>−Cu−S on PMS greatly enhanced the photocatalytic activation of S−doped CuBi<sub>2</sub>O<sub>4</sub>, which resulted in the degradation of ciprofloxacin (CIP). The optimal CBOS2 was capable of removing 95.3 % of CIP in 60 min, a 40.7 % increase compared to pure CuBi<sub>2</sub>O<sub>4</sub>. Electron paramagnetic resonance (EPR) spectroscopy and quenching tests confirmed the synergistic effect of radical and non-radical mixed pathways (SO<sub>4</sub><sup>•−</sup>, •OH, <sup>1</sup>O<sub>2</sub>) on the removal of CIP. The potential pathways for CIP degradation were further explored using liquid chromatography-mass spectrometry (LC−MS) test results. This study offers a novel perspective for the research and application of spinel-based catalysts in water treatment.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"494 ","pages":"Article 153075"},"PeriodicalIF":13.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724045637","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The regulation of the metal–oxygen tetrahedron active center in spinel catalysts is crucial for enhancing the photocatalytic activation of peroxymonosulfate (PMS) to degrade organic pollutants. Herein, S−doped CuBi2O4 (CBOS) catalysts with surface oxygen vacancies (Ov) were prepared via a one-step hydrothermal method. The cycling of Cu(I)/Cu(II) and the trapping of photogenerated electrons by Ov significantly enhance the migration of photogenerated carriers. Density functional theory (DFT) calculations revealed that the synergistic effect of S doping and Ov successfully modulated the charge distribution around the Cu site in Cu−O tetrahedron. Furthermore, the exceptional adsorption and activation abilities of Ov−Cu−S on PMS greatly enhanced the photocatalytic activation of S−doped CuBi2O4, which resulted in the degradation of ciprofloxacin (CIP). The optimal CBOS2 was capable of removing 95.3 % of CIP in 60 min, a 40.7 % increase compared to pure CuBi2O4. Electron paramagnetic resonance (EPR) spectroscopy and quenching tests confirmed the synergistic effect of radical and non-radical mixed pathways (SO4•−, •OH, 1O2) on the removal of CIP. The potential pathways for CIP degradation were further explored using liquid chromatography-mass spectrometry (LC−MS) test results. This study offers a novel perspective for the research and application of spinel-based catalysts in water treatment.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.