Real-time Prediction of Parametric Roll Motion via Power-activation Feed-forward Neural Network with Model Experiment Data

Xin Li, Ning Ma, QiQi Shi, X. Gu
{"title":"Real-time Prediction of Parametric Roll Motion via Power-activation Feed-forward Neural Network with Model Experiment Data","authors":"Xin Li, Ning Ma, QiQi Shi, X. Gu","doi":"10.17736/ijope.2023.mt35","DOIUrl":null,"url":null,"abstract":"The Power-activation Feed-forward Neural Network (PFN) is used to achieve real-time prediction of the ship’s parametric roll motion. The theoretical rationality of real-time prediction based on the ship’s rolling motion time series data is verified. Sequence-to-Sequence models are proposed and used to compare the PFN model, Long Short-Term Memory model, and Convolutional Neural Network. Three different groups of model experiment data are used for comparison. Results show that PFN has advantages in real-time prediction of parametric roll motion due to its time-varying weight adjustment methods, with a more effective mapping mode, higher accuracy, and shorter computing time.","PeriodicalId":503139,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":"62 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17736/ijope.2023.mt35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Power-activation Feed-forward Neural Network (PFN) is used to achieve real-time prediction of the ship’s parametric roll motion. The theoretical rationality of real-time prediction based on the ship’s rolling motion time series data is verified. Sequence-to-Sequence models are proposed and used to compare the PFN model, Long Short-Term Memory model, and Convolutional Neural Network. Three different groups of model experiment data are used for comparison. Results show that PFN has advantages in real-time prediction of parametric roll motion due to its time-varying weight adjustment methods, with a more effective mapping mode, higher accuracy, and shorter computing time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模型试验数据,通过功率激活前馈神经网络对参数滚动运动进行实时预测
利用功率激活前馈神经网络(PFN)实现了对船舶参数滚动运动的实时预测。验证了基于船舶滚动运动时间序列数据的实时预测的理论合理性。提出了序列到序列模型,并用于比较 PFN 模型、长短期记忆模型和卷积神经网络。比较使用了三组不同的模型实验数据。结果表明,PFN 因其时变权重调整方法而在参数滚动运动的实时预测方面具有优势,其映射模式更有效、精度更高、计算时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leader-Follower Formation Control Characteristics with Dynamic Way Point on Cruising AUVs The Theoretical and Experimental Research on Rapid Sampling Technology for Marine Gas Hydrate Numerical Analysis on Coupling Dynamic Response of Twin Barge-Topside Floatover During Load Transfer Stage in Beam Waves Improving the Fatigue Strength of Butt Welds in the As-Welded and Grit-Blasted Condition for Steel Towers of Wind Turbines A Prediction Method for Steady Wave Forces and Moment Acting on Ship Maneuvering in Short Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1