A CuOx/p+-Si memristor with short- and long-term plasticity for homogeneous reservoir computing system

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2024-06-15 DOI:10.1016/j.mtnano.2024.100494
Jiaqi Li , Yunhao Luo , Senhao Yan , Lijuan Cao , Xiaomin Cheng , Xiangshui Miao
{"title":"A CuOx/p+-Si memristor with short- and long-term plasticity for homogeneous reservoir computing system","authors":"Jiaqi Li ,&nbsp;Yunhao Luo ,&nbsp;Senhao Yan ,&nbsp;Lijuan Cao ,&nbsp;Xiaomin Cheng ,&nbsp;Xiangshui Miao","doi":"10.1016/j.mtnano.2024.100494","DOIUrl":null,"url":null,"abstract":"<div><p>Reservoir computing (RC) system is a simple and cost-efficient neuromorphic computing system mainly consisting of a reservoir layer and a readout layer. The reservoir layer comprises nonlinear nodes with short-term plasticity (STP), while the readout layer comprises linear nodes with long-term plasticity (LTP). Here, we propose a self-rectifying (&gt;10<sup>2</sup>) memristor based on CuO<sub>x</sub>/p<sup>+</sup>-Si heterojunction that exhibits both nonlinear STP and linear LTP characteristics with high uniformity (<strong><em>σ</em></strong>/<strong><em>μ</em></strong> = 2.8 %). The resistive switching of the device is mainly based on electron trapping/detrapping in CuO<sub>x</sub> film. The trapping before relaxation is very unstable and less capable of long-term trapping, which leads to STP. The trapping after relaxation is relatively stable for the lowered trap barrier, which induces LTP. Utilizing its dynamic STP characteristics for the reservoir layer and LTP properties for the readout layer, a CuO<sub>x</sub>/p<sup>+</sup>-Si memristor-based homogeneous dynamic RC system was constructed for a spoken-digital recognition task, yielding an accuracy rate of 95.33 %. These results affirm the tremendous potential of our device in establishing a highly compact and full-memristor-based homogeneous RC system.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"27 ","pages":"Article 100494"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir computing (RC) system is a simple and cost-efficient neuromorphic computing system mainly consisting of a reservoir layer and a readout layer. The reservoir layer comprises nonlinear nodes with short-term plasticity (STP), while the readout layer comprises linear nodes with long-term plasticity (LTP). Here, we propose a self-rectifying (>102) memristor based on CuOx/p+-Si heterojunction that exhibits both nonlinear STP and linear LTP characteristics with high uniformity (σ/μ = 2.8 %). The resistive switching of the device is mainly based on electron trapping/detrapping in CuOx film. The trapping before relaxation is very unstable and less capable of long-term trapping, which leads to STP. The trapping after relaxation is relatively stable for the lowered trap barrier, which induces LTP. Utilizing its dynamic STP characteristics for the reservoir layer and LTP properties for the readout layer, a CuOx/p+-Si memristor-based homogeneous dynamic RC system was constructed for a spoken-digital recognition task, yielding an accuracy rate of 95.33 %. These results affirm the tremendous potential of our device in establishing a highly compact and full-memristor-based homogeneous RC system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于同质水库计算系统的具有短期和长期可塑性的铜氧化物/p+-硅记忆晶体管
储层计算(RC)系统是一种简单而经济高效的神经形态计算系统,主要由储层和读出层组成。储层由具有短期可塑性(STP)的非线性节点组成,而读出层则由具有长期可塑性(LTP)的线性节点组成。在这里,我们提出了一种基于 CuOx/p+-Si 异质结的自整流 (>102)忆阻器,该忆阻器同时具有非线性 STP 和线性 LTP 特性,且均匀性高(σ/μ = 2.8 %)。该器件的电阻开关主要基于氧化铜薄膜中的电子捕获/俘获。弛豫前的捕获非常不稳定,长期捕获能力较差,从而导致 STP。弛豫后的捕获相对稳定,捕获势垒降低,从而诱导 LTP。利用储层的动态 STP 特性和读出层的 LTP 特性,我们构建了一个基于 CuOx/p+-Si Memristor 的同质动态 RC 系统,用于口语-数字识别任务,准确率达到 95.33%。这些结果证实了我们的设备在建立高度紧凑、基于全membristor的同源动态遥控系统方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Enhanced microwave absorption properties of Ti3AlC2 particles modified by a facile preoxidation strategy Poly aryletherketone chemically modified multi-walled carbon nanotubes/poly etheretherketone electromagnetic interference shielding foam suitable for high temperature and strong corrosive media Metal-sown selective area growth of high crystalline quality InAsSb nanowires and networks by molecular-beam epitaxy Building robust copper nanostructures via carbon coating derived from polydopamine for oxygen reduction reaction PAM material that instantly gives ordinary fabrics excellent flame retardant and thermal insulation properties for fire rescue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1