Chance constrained directional models in stochastic data envelopment analysis

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Perspectives Pub Date : 2024-06-01 DOI:10.1016/j.orp.2024.100307
V.J. Bolós , R. Benítez , V. Coll-Serrano
{"title":"Chance constrained directional models in stochastic data envelopment analysis","authors":"V.J. Bolós ,&nbsp;R. Benítez ,&nbsp;V. Coll-Serrano","doi":"10.1016/j.orp.2024.100307","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a new family of chance constrained directional models in stochastic data envelopment analysis, generalizing the deterministic directional models and the chance constrained radial models. We prove that chance constrained directional models define the same concept of stochastic efficiency as the one given by chance constrained radial models and, as a particular case, we obtain a stochastic version of the generalized Farrell measure. Finally, we give some examples of application of chance constrained directional models with stochastic and deterministic directions, showing that inefficiency scores obtained with stochastic directions are less or equal than those obtained considering deterministic directions whose values are the means of the stochastic ones.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"12 ","pages":"Article 100307"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716024000113/pdfft?md5=b203f1d3524e063c3af56ce9551bd228&pid=1-s2.0-S2214716024000113-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716024000113","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a new family of chance constrained directional models in stochastic data envelopment analysis, generalizing the deterministic directional models and the chance constrained radial models. We prove that chance constrained directional models define the same concept of stochastic efficiency as the one given by chance constrained radial models and, as a particular case, we obtain a stochastic version of the generalized Farrell measure. Finally, we give some examples of application of chance constrained directional models with stochastic and deterministic directions, showing that inefficiency scores obtained with stochastic directions are less or equal than those obtained considering deterministic directions whose values are the means of the stochastic ones.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机数据包络分析中的机会约束方向模型
我们在随机数据包络分析中构建了一个新的偶然约束方向模型系列,对确定性方向模型和偶然约束径向模型进行了概括。我们证明,偶然约束方向模型定义了与偶然约束径向模型相同的随机效率概念,并且作为一种特殊情况,我们得到了广义法雷尔度量的随机版本。最后,我们举例说明了随机和确定方向的机会约束方向模型的应用,表明随机方向的无效率得分小于或等于确定方向的无效率得分,后者的值是随机方向的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
期刊最新文献
Integrated order acceptance and inventory policy optimization in a multi-period, multi-product hybrid production system Distributional robustness based on Wasserstein-metric approach for humanitarian logistics problem under road disruptions A generalized behavioral-based goal programming approach for decision-making under imprecision δ-perturbation of bilevel optimization problems: An error bound analysis Competitive pricing and seed node selection in a two-echelon supply chain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1