Evolutionary game analysis of stakeholder privacy management in the AIGC model

IF 3.7 4区 管理学 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Perspectives Pub Date : 2025-02-13 DOI:10.1016/j.orp.2025.100327
Yali Lv, Jian Yang, Xiaoning Sun, Huafei Wu
{"title":"Evolutionary game analysis of stakeholder privacy management in the AIGC model","authors":"Yali Lv,&nbsp;Jian Yang,&nbsp;Xiaoning Sun,&nbsp;Huafei Wu","doi":"10.1016/j.orp.2025.100327","DOIUrl":null,"url":null,"abstract":"<div><div>The technological development powered by Artificial Intelligence Generated Content (AIGC) models, exemplified by Generative Pre-trained Transformer 4 (GPT-4) and Bidirectional Encoder Representations from Transformers (BERT), has completely transformed machine language processing and fostered substantial technological advancements. However, their extensive deployment has amplified concerns regarding data privacy risks, which are attributed not only to technological vulnerabilities but also to the intricate conflicts of interest among model providers, application service providers, and privacy regulators. To tackle this challenge, this research develops a tripartite evolutionary game model that examines the strategic interactions and dynamic relationships among large language model providers, application service providers, and privacy regulatory agencies. By employing replicator dynamic equations and Jacobian matrices, the research investigates the stability of strategic equilibria and simulates optimal adjustment paths across diverse policy scenarios. Drawing on the research findings, this paper offers practical recommendations to strengthen data privacy protection in large language models, delivering a solid theoretical foundation for policymakers and industry practitioners.</div></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"14 ","pages":"Article 100327"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221471602500003X","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The technological development powered by Artificial Intelligence Generated Content (AIGC) models, exemplified by Generative Pre-trained Transformer 4 (GPT-4) and Bidirectional Encoder Representations from Transformers (BERT), has completely transformed machine language processing and fostered substantial technological advancements. However, their extensive deployment has amplified concerns regarding data privacy risks, which are attributed not only to technological vulnerabilities but also to the intricate conflicts of interest among model providers, application service providers, and privacy regulators. To tackle this challenge, this research develops a tripartite evolutionary game model that examines the strategic interactions and dynamic relationships among large language model providers, application service providers, and privacy regulatory agencies. By employing replicator dynamic equations and Jacobian matrices, the research investigates the stability of strategic equilibria and simulates optimal adjustment paths across diverse policy scenarios. Drawing on the research findings, this paper offers practical recommendations to strengthen data privacy protection in large language models, delivering a solid theoretical foundation for policymakers and industry practitioners.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Operations Research Perspectives
Operations Research Perspectives Mathematics-Statistics and Probability
CiteScore
6.40
自引率
0.00%
发文量
36
审稿时长
27 days
期刊最新文献
Physical question, virtual answer: Optimized real-time physical simulations and physics-informed learning approaches for cargo loading stability Evolutionary game analysis of stakeholder privacy management in the AIGC model Pricing strategy of supply chain considering response time of extended warranty service Cooperation and competition in an oligopolistic and mature industry: A case study on the cationic reagent industry based on an optimization model Novel shortcut strategies in copositivity detection: Decomposition for quicker positive certificates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1