Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen
{"title":"Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay","authors":"Shaobin He , Xiaoyun Guo , Qionghua Zheng , Huanran Shen , Yuan Xu , Fenglin Lin , Jincheng Chen , Haohua Deng , Yiming Zeng , Wei Chen","doi":"10.1016/j.cclet.2024.110096","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers have shown significant interest in modulating the peroxidase-like activity of nanozymes. Among these, bimetallic nanozymes have shown superior peroxidase-like activity over monometallic counterparts, offering enhanced performance and cost-efficiency in nanozyme designs. Herein, bimetallic nanozymes comprising nickel (Ni) and osmium (Os) incorporated into hyaluronate (HA) have been developed, resulting in HA-Ni<sub>n</sub>/Os nanoclusters. Subsequently, comprehensive characterizations have been conducted. Further investigation has revealed that HA-Ni<sub>n</sub>/Os efficiently catalyzed 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), confirming its peroxidase-like behavior and role as a nanozyme. Impressively, HA-Ni<sub>2</sub>/Os (Ni/Os = 2:1) displays heightened substrate affinity, accelerated reaction rates, enhanced hydroxyl radical production in acidic conditions, and exhibits activity unit of 1224 U/mg, representing more than two-fold increase compared to non-Ni-supported Os nanozyme. Theoretical calculations indicate that Ni support enhances the peroxidase-like process of Os nanozyme by improving H<sub>2</sub>O<sub>2</sub> adsorption and TMB oxidation. Crucially, the support of Ni does not significantly alter the other enzyme-like activities of Os nanozymes, thereby enabling Ni to selectively enhance their peroxidase-like activity. In terms of application, the peroxidase-like ability of HA-Ni<sub>2</sub>/Os, facilitated by HA's carboxyl groups enabling crosslinking, proves effective in a squamous carcinoma antigen immunoassay. Moreover, HA-Ni<sub>2</sub>/Os exhibit reliable stability, promising as a peroxidase substitute. This work underscores the advantages of incorporating Ni into Os, specifically enhancing peroxidase-like activity, highlighting the potential of Os bimetallic nanozymes for peroxidase-based applications.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 4","pages":"Article 110096"},"PeriodicalIF":8.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724006156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers have shown significant interest in modulating the peroxidase-like activity of nanozymes. Among these, bimetallic nanozymes have shown superior peroxidase-like activity over monometallic counterparts, offering enhanced performance and cost-efficiency in nanozyme designs. Herein, bimetallic nanozymes comprising nickel (Ni) and osmium (Os) incorporated into hyaluronate (HA) have been developed, resulting in HA-Nin/Os nanoclusters. Subsequently, comprehensive characterizations have been conducted. Further investigation has revealed that HA-Nin/Os efficiently catalyzed 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation with hydrogen peroxide (H2O2), confirming its peroxidase-like behavior and role as a nanozyme. Impressively, HA-Ni2/Os (Ni/Os = 2:1) displays heightened substrate affinity, accelerated reaction rates, enhanced hydroxyl radical production in acidic conditions, and exhibits activity unit of 1224 U/mg, representing more than two-fold increase compared to non-Ni-supported Os nanozyme. Theoretical calculations indicate that Ni support enhances the peroxidase-like process of Os nanozyme by improving H2O2 adsorption and TMB oxidation. Crucially, the support of Ni does not significantly alter the other enzyme-like activities of Os nanozymes, thereby enabling Ni to selectively enhance their peroxidase-like activity. In terms of application, the peroxidase-like ability of HA-Ni2/Os, facilitated by HA's carboxyl groups enabling crosslinking, proves effective in a squamous carcinoma antigen immunoassay. Moreover, HA-Ni2/Os exhibit reliable stability, promising as a peroxidase substitute. This work underscores the advantages of incorporating Ni into Os, specifically enhancing peroxidase-like activity, highlighting the potential of Os bimetallic nanozymes for peroxidase-based applications.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.