Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, S. Vahdati
{"title":"Beyond Boundaries: A Human-like Approach for Question Answering over Structured and Unstructured Information Sources","authors":"Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, S. Vahdati","doi":"10.1162/tacl_a_00671","DOIUrl":null,"url":null,"abstract":"Abstract Answering factual questions from heterogenous sources, such as graphs and text, is a key capacity of intelligent systems. Current approaches either (i) perform question answering over text and structured sources as separate pipelines followed by a merge step or (ii) provide an early integration, giving up the strengths of particular information sources. To solve this problem, we present “HumanIQ”, a method that teaches language models to dynamically combine retrieved information by imitating how humans use retrieval tools. Our approach couples a generic method for gathering human demonstrations of tool use with adaptive few-shot learning for tool augmented models. We show that HumanIQ confers significant benefits, including i) reducing the error rate of our strongest baseline (GPT-4) by over 50% across 3 benchmarks, (ii) improving human preference over responses from vanilla GPT-4 (45.3% wins, 46.7% ties, 8.0% loss), and (iii) outperforming numerous task-specific baselines.","PeriodicalId":506323,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"14 4","pages":"786-802"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/tacl_a_00671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Answering factual questions from heterogenous sources, such as graphs and text, is a key capacity of intelligent systems. Current approaches either (i) perform question answering over text and structured sources as separate pipelines followed by a merge step or (ii) provide an early integration, giving up the strengths of particular information sources. To solve this problem, we present “HumanIQ”, a method that teaches language models to dynamically combine retrieved information by imitating how humans use retrieval tools. Our approach couples a generic method for gathering human demonstrations of tool use with adaptive few-shot learning for tool augmented models. We show that HumanIQ confers significant benefits, including i) reducing the error rate of our strongest baseline (GPT-4) by over 50% across 3 benchmarks, (ii) improving human preference over responses from vanilla GPT-4 (45.3% wins, 46.7% ties, 8.0% loss), and (iii) outperforming numerous task-specific baselines.