{"title":"Micro−/nanostructures for surface-enhanced Raman spectroscopy: Recent advances and perspectives","authors":"Ruipeng Chen, Shuang Li, Shuyue Ren, Dianpeng Han, Kang Qin, Xuexia Jia, Huanying Zhou, Zhixian Gao","doi":"10.1016/j.cis.2024.103235","DOIUrl":null,"url":null,"abstract":"<div><p>Surface-enhanced Raman spectroscopy (SERS) has great potential for the analysis of molecules adsorbed on metals with rough surfaces or substrates with micro−/nanostructures. Plasmonic coupling between metal nanoparticles and the morphology of the rough metal surface can produce “hot spots” that enhance Raman scattering by adsorbed molecules, typically at micro- to nanomolar concentrations, although high enhancement factors can also facilitate single-molecule detection. This phenomenon is widely applicable for chemical analysis and sensing in various fields. In this review, the latest research progress on SERS micro−/nanosensors is evaluated, and the sensors are classified according to their individual functions. Furthermore, the design principles and working mechanisms of reported SERS-active micro−/nanostructured substrates are analyzed, and the design features adopted to overcome the difficulties associated with precision detection are explored. Finally, challenges and directions for future development in this field are discussed. This review serves as a design guide for novel SERS-active substrates.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103235"},"PeriodicalIF":15.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001581","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-enhanced Raman spectroscopy (SERS) has great potential for the analysis of molecules adsorbed on metals with rough surfaces or substrates with micro−/nanostructures. Plasmonic coupling between metal nanoparticles and the morphology of the rough metal surface can produce “hot spots” that enhance Raman scattering by adsorbed molecules, typically at micro- to nanomolar concentrations, although high enhancement factors can also facilitate single-molecule detection. This phenomenon is widely applicable for chemical analysis and sensing in various fields. In this review, the latest research progress on SERS micro−/nanosensors is evaluated, and the sensors are classified according to their individual functions. Furthermore, the design principles and working mechanisms of reported SERS-active micro−/nanostructured substrates are analyzed, and the design features adopted to overcome the difficulties associated with precision detection are explored. Finally, challenges and directions for future development in this field are discussed. This review serves as a design guide for novel SERS-active substrates.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.