Zhen Zhang , Chengyuan Xing , Hongyan Su , Jianghang Wang , Yaodong Qi , Mengfei Li
{"title":"In vitro plant regeneration and bioactive metabolite production of endangered medicinal plant Fritillaria cirrhosa","authors":"Zhen Zhang , Chengyuan Xing , Hongyan Su , Jianghang Wang , Yaodong Qi , Mengfei Li","doi":"10.1016/j.cpb.2024.100363","DOIUrl":null,"url":null,"abstract":"<div><p>The bulb of <em>Fritillaria cirrhosa</em> D. Don is widely used for the anti-asthmatic, anti-tussive, and anti-cancer agents, etc., while the yield is limited by an endangered status, a long juvenile phase, and restricted growth habitat. Ancillary approaches to improve the bulb yield by micropropagation and bioactive metabolites production by bioreactor have not been established. Here is reported the plant regeneration, suspension cell culture, and bioactive metabolite production at different treatments. The embryogenic calli were successfully induced via the histomorphological identification. The highest proliferation times (4.11-fold) were observed with a select combination of hormones [NAA (0.2 mg/L) + 6-BA (1.0 mg/L) + GA<sub>3</sub> (1.0 mg/L)] and culture conditions (red light and 20 °C), the highest content of imperialine (0.13 mg/g) was observed under blue light, total phenolic (0.52 mg/g) under red light, polysaccharides (36.57 mg/g) and total flavonoids (2.67 mg/g) as well as antioxidant capacity under white light. The plantlets were regenerated within 125 d from the induced embryogenic calli to acclimation and transplantation of seedlings. For the suspension cell culture, a 6.30-, 1.78-, 1.37-, and 1.51-fold increase of proliferation times, imperialine, polysaccharides, and total phenolic contents was observed at 40 d, respectively. Based on the above observations, an effective and complete <em>in vitro</em> approach has been proposed to regenerate plants and produce bioactive metabolites in <em>F. cirrhosa</em>.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100363"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000458/pdfft?md5=0ee3d8d6ccc87da7348595b82e36de61&pid=1-s2.0-S2214662824000458-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The bulb of Fritillaria cirrhosa D. Don is widely used for the anti-asthmatic, anti-tussive, and anti-cancer agents, etc., while the yield is limited by an endangered status, a long juvenile phase, and restricted growth habitat. Ancillary approaches to improve the bulb yield by micropropagation and bioactive metabolites production by bioreactor have not been established. Here is reported the plant regeneration, suspension cell culture, and bioactive metabolite production at different treatments. The embryogenic calli were successfully induced via the histomorphological identification. The highest proliferation times (4.11-fold) were observed with a select combination of hormones [NAA (0.2 mg/L) + 6-BA (1.0 mg/L) + GA3 (1.0 mg/L)] and culture conditions (red light and 20 °C), the highest content of imperialine (0.13 mg/g) was observed under blue light, total phenolic (0.52 mg/g) under red light, polysaccharides (36.57 mg/g) and total flavonoids (2.67 mg/g) as well as antioxidant capacity under white light. The plantlets were regenerated within 125 d from the induced embryogenic calli to acclimation and transplantation of seedlings. For the suspension cell culture, a 6.30-, 1.78-, 1.37-, and 1.51-fold increase of proliferation times, imperialine, polysaccharides, and total phenolic contents was observed at 40 d, respectively. Based on the above observations, an effective and complete in vitro approach has been proposed to regenerate plants and produce bioactive metabolites in F. cirrhosa.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.