Linrui Wang , Zixiang Hao , Shengpeng Chen , Haoyu Chen , Yichun Lou , Chengli He , Yang Chen , Xiaoli Cui
{"title":"Critical review on mechanochemical fabrication of full-carbon graphyne material","authors":"Linrui Wang , Zixiang Hao , Shengpeng Chen , Haoyu Chen , Yichun Lou , Chengli He , Yang Chen , Xiaoli Cui","doi":"10.1016/j.pmatsci.2024.101327","DOIUrl":null,"url":null,"abstract":"<div><p>Graphyne, a novel regularly sp-/sp<sup>2</sup>-hybridized carbon allotrope, has attracted significant interest in synthetic chemistry and various applications. As a promising approach for material synthesis, mechanochemistry has first been successfully applied to fabricate γ-graphyne (γ-GY) which exhibits highest structural stability among graphyne family and possesses fascinating properties like a direct bandgap and unique nanoporosity. The γ-GY skeleton forms via an alkyne nucleophilic cross-coupling reaction induced by intense mechanical energy using hexahalobenzene and calcium carbide as precursors. This mechanochemical strategy is simple, high-yielding, scalable, and commercially viable. This review aims to offer a comprehensive and critical understanding of mechanochemical synthesis of γ-GY. Firstly, the basic concept, physicochemical properties and potential applications of graphyne, especially γ-GY, are introduced. Subsequently, the review summarizes several state-of-the-art synthetic strategies for γ-GY and corresponding representative characterizations. Furthermore, the feasibility of mechanosynthesis for γ-GY is elucidated through the discussion of its origin which involves mechanochemical dehalogenation, and its subsequent development for the synthesis of alkynyl cross-linked carbon derivatives. The reaction mechanism, and controversial factors (including solvent issue, side reaction, and carbonaceous impurities) of the mechanochemical route are adequately outlined and analyzed. Evidence confirms the existence of γ-GY in the as-prepared sample and inevitable generation of by-products such as carbonaceous impurities. Finally, the challenges and future research directions of mechanochemical synthesizing high-quality γ-GY and derivatives (analogues) are proposed.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101327"},"PeriodicalIF":33.6000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000963","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphyne, a novel regularly sp-/sp2-hybridized carbon allotrope, has attracted significant interest in synthetic chemistry and various applications. As a promising approach for material synthesis, mechanochemistry has first been successfully applied to fabricate γ-graphyne (γ-GY) which exhibits highest structural stability among graphyne family and possesses fascinating properties like a direct bandgap and unique nanoporosity. The γ-GY skeleton forms via an alkyne nucleophilic cross-coupling reaction induced by intense mechanical energy using hexahalobenzene and calcium carbide as precursors. This mechanochemical strategy is simple, high-yielding, scalable, and commercially viable. This review aims to offer a comprehensive and critical understanding of mechanochemical synthesis of γ-GY. Firstly, the basic concept, physicochemical properties and potential applications of graphyne, especially γ-GY, are introduced. Subsequently, the review summarizes several state-of-the-art synthetic strategies for γ-GY and corresponding representative characterizations. Furthermore, the feasibility of mechanosynthesis for γ-GY is elucidated through the discussion of its origin which involves mechanochemical dehalogenation, and its subsequent development for the synthesis of alkynyl cross-linked carbon derivatives. The reaction mechanism, and controversial factors (including solvent issue, side reaction, and carbonaceous impurities) of the mechanochemical route are adequately outlined and analyzed. Evidence confirms the existence of γ-GY in the as-prepared sample and inevitable generation of by-products such as carbonaceous impurities. Finally, the challenges and future research directions of mechanochemical synthesizing high-quality γ-GY and derivatives (analogues) are proposed.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.