Syed Abdul Ghafar , Muhammad Naqiuddin Mohd Warid , Norhidayah Abdul Hassan , Zulfiqar Ali Jattak , Ashraf Abdalla Mohammed Radwan
{"title":"Mechanical performance of cold mix asphalt containing cup lump rubber as a sustainable bio-modifier","authors":"Syed Abdul Ghafar , Muhammad Naqiuddin Mohd Warid , Norhidayah Abdul Hassan , Zulfiqar Ali Jattak , Ashraf Abdalla Mohammed Radwan","doi":"10.1016/j.jtte.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>The road construction industry aims to contribute to the protection of already compromised environment. Cold mix asphalt (CMA) is a measure initiated by the road industry to protect the environment and preserve energy. Despite having additional benefits, CMA has attracted little attention due to its inferior performance. CMA's performance is enhanced using a sustainable binder bio-modifier, natural cup lump rubber (CLR) is one of them. This study evaluated the tensile properties, rutting, moisture susceptibility, and adhesion properties of CLR-modified CMA (CMA-CR). The tensile property was enhanced by 26% due to CLR modification. CMA-CR had excellent rutting resistance of less than 2 mm rut depth at 10,000 load cycles, showing 70% improvement compared with conventional CMA. Moisture susceptibility evaluation indicated that CMA-CR had tensile strength ratio (TSR) value of 104%, satisfying the minimum 80% requirement of AASHTO T283. It also retained more than 96% bitumen coating. The moisture damage resistance was improved by 12% and 10% in terms of TSR and stripping, respectively. The durability results revealed that the CMA-CR mixture prevented higher mass loss, representing 14% improvement compared with conventional CMA.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095756424000552/pdfft?md5=b94fa2a845d96981a2881275ff8f235d&pid=1-s2.0-S2095756424000552-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756424000552","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The road construction industry aims to contribute to the protection of already compromised environment. Cold mix asphalt (CMA) is a measure initiated by the road industry to protect the environment and preserve energy. Despite having additional benefits, CMA has attracted little attention due to its inferior performance. CMA's performance is enhanced using a sustainable binder bio-modifier, natural cup lump rubber (CLR) is one of them. This study evaluated the tensile properties, rutting, moisture susceptibility, and adhesion properties of CLR-modified CMA (CMA-CR). The tensile property was enhanced by 26% due to CLR modification. CMA-CR had excellent rutting resistance of less than 2 mm rut depth at 10,000 load cycles, showing 70% improvement compared with conventional CMA. Moisture susceptibility evaluation indicated that CMA-CR had tensile strength ratio (TSR) value of 104%, satisfying the minimum 80% requirement of AASHTO T283. It also retained more than 96% bitumen coating. The moisture damage resistance was improved by 12% and 10% in terms of TSR and stripping, respectively. The durability results revealed that the CMA-CR mixture prevented higher mass loss, representing 14% improvement compared with conventional CMA.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.