Hongbin Chen , Shuang Yi , Jinjin Li , Jiawei Fu , Liu Yang , Yadong Xu , Linfang Qian , Longmiao Chen , Songlin Ding
{"title":"Facilitating macroscopic superlubricity through graphene oxide nanosheet additives in phosphoric acid","authors":"Hongbin Chen , Shuang Yi , Jinjin Li , Jiawei Fu , Liu Yang , Yadong Xu , Linfang Qian , Longmiao Chen , Songlin Ding","doi":"10.1016/j.mtnano.2024.100493","DOIUrl":null,"url":null,"abstract":"<div><p>The field of superlubricity is garnering significant global interest amid the ongoing energy crisis. Various liquids can achieve superlubricity under ambient conditions; however, this limits their applications, such as in acidic environments. Consequently, enhancing anti-wear properties and reducing the coefficient of friction (COF) have become pressing challenges. Graphene-based materials are being extensively studied for tribological applications, attributed to their unique molecular structures and lubricating properties, often serving as lubricating additives to significantly reduce COF. In this study, graphene oxide (GO) nanosheets were utilized as lubricating additives in phosphoric acid (H<sub>3</sub>PO<sub>4</sub>; pH = 1.5) to explore lubrication enhancement in acidic environments. An ultralow COF of 0.001 was achieved, accompanied by reduced surface roughness and increased contact pressure (by 96.42 %), following the lubrication with GO-H<sub>3</sub>PO<sub>4</sub>. The reduction in COF post-lubrication with GO-H<sub>3</sub>PO<sub>4</sub> is ascribed to three primary factors: the formation of a tribofilm via chemical reactions (comprising silica and phosphorus oxide layers), the hydrogen bond effect leading to a hydrated water layer with low shear strength, and the adsorption of GO nanosheets on the friction surface, facilitating friction transfer from Si<sub>3</sub>N<sub>4</sub>/Si<sub>3</sub>N<sub>4</sub> to GO/GO.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"27 ","pages":"Article 100493"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000439","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The field of superlubricity is garnering significant global interest amid the ongoing energy crisis. Various liquids can achieve superlubricity under ambient conditions; however, this limits their applications, such as in acidic environments. Consequently, enhancing anti-wear properties and reducing the coefficient of friction (COF) have become pressing challenges. Graphene-based materials are being extensively studied for tribological applications, attributed to their unique molecular structures and lubricating properties, often serving as lubricating additives to significantly reduce COF. In this study, graphene oxide (GO) nanosheets were utilized as lubricating additives in phosphoric acid (H3PO4; pH = 1.5) to explore lubrication enhancement in acidic environments. An ultralow COF of 0.001 was achieved, accompanied by reduced surface roughness and increased contact pressure (by 96.42 %), following the lubrication with GO-H3PO4. The reduction in COF post-lubrication with GO-H3PO4 is ascribed to three primary factors: the formation of a tribofilm via chemical reactions (comprising silica and phosphorus oxide layers), the hydrogen bond effect leading to a hydrated water layer with low shear strength, and the adsorption of GO nanosheets on the friction surface, facilitating friction transfer from Si3N4/Si3N4 to GO/GO.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites