Recent progress on graphene nanoribbon-based electrocatalysts for oxygen reduction reaction

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Electrochemistry Pub Date : 2024-06-10 DOI:10.1016/j.coelec.2024.101554
Yogesh Kumar , Srinu Akula , Marciélli K.R. Souza , Gilberto Maia , Kaido Tammeveski
{"title":"Recent progress on graphene nanoribbon-based electrocatalysts for oxygen reduction reaction","authors":"Yogesh Kumar ,&nbsp;Srinu Akula ,&nbsp;Marciélli K.R. Souza ,&nbsp;Gilberto Maia ,&nbsp;Kaido Tammeveski","doi":"10.1016/j.coelec.2024.101554","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene nanoribbons (GNRs) have emerged as promising candidates for catalysing the oxygen reduction reaction (ORR) due to their unique structural and electronic properties. This review presents a comprehensive overview of recent advances in utilising GNRs as catalysts or support materials for ORR application and discusses the underlying active sites, synthesis strategies, and optimisation approaches. The synergistic effects between GNRs and dopants, heteroatom substitutions and hybridisation with other materials have also been included. Moreover, experimental studies have elucidated the intricate interplay between GNR structure and the ORR kinetics, providing valuable catalyst design and optimisation insights. This review highlights the potential of GNR-based catalysts for ORR electrocatalysis and underscores the ongoing efforts to overcome existing limitations to realise their applicability in future electrochemical energy conversion technologies.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001157","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene nanoribbons (GNRs) have emerged as promising candidates for catalysing the oxygen reduction reaction (ORR) due to their unique structural and electronic properties. This review presents a comprehensive overview of recent advances in utilising GNRs as catalysts or support materials for ORR application and discusses the underlying active sites, synthesis strategies, and optimisation approaches. The synergistic effects between GNRs and dopants, heteroatom substitutions and hybridisation with other materials have also been included. Moreover, experimental studies have elucidated the intricate interplay between GNR structure and the ORR kinetics, providing valuable catalyst design and optimisation insights. This review highlights the potential of GNR-based catalysts for ORR electrocatalysis and underscores the ongoing efforts to overcome existing limitations to realise their applicability in future electrochemical energy conversion technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于石墨烯纳米带的氧还原反应电催化剂的最新研究进展
由于其独特的结构和电子特性,石墨烯纳米带(GNR)已成为催化氧还原反应(ORR)的理想候选材料。本综述全面概述了将 GNR 用作 ORR 应用催化剂或支撑材料的最新进展,并讨论了其基本活性位点、合成策略和优化方法。GNR 与掺杂剂、杂原子取代以及与其他材料杂化之间的协同效应也包括在内。此外,实验研究还阐明了 GNR 结构与 ORR 动力学之间错综复杂的相互作用,为催化剂的设计和优化提供了宝贵的见解。本综述强调了基于 GNR 的催化剂在 ORR 电催化方面的潜力,并强调了为克服现有限制以实现其在未来电化学能源转换技术中的适用性而正在进行的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
期刊最新文献
Insights into electrode–electrolyte interfaces by in situ scanning tunnelling microscopy Editorial Board Current status of ferro-/ferricyanide for redox flow batteries Modeling oxygen reduction activity loss mechanisms in atomically dispersed Fe–N–C electrocatalysts Machine learning-guided design, synthesis, and characterization of atomically dispersed electrocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1