Current State of Open Source Force Fields in Protein–Ligand Binding Affinity Predictions

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-06-19 DOI:10.1021/acs.jcim.4c00417
David F. Hahn*, Vytautas Gapsys, Bert L. de Groot, David L. Mobley and Gary Tresadern, 
{"title":"Current State of Open Source Force Fields in Protein–Ligand Binding Affinity Predictions","authors":"David F. Hahn*,&nbsp;Vytautas Gapsys,&nbsp;Bert L. de Groot,&nbsp;David L. Mobley and Gary Tresadern,&nbsp;","doi":"10.1021/acs.jcim.4c00417","DOIUrl":null,"url":null,"abstract":"<p >In drug discovery, the in silico prediction of binding affinity is one of the major means to prioritize compounds for synthesis. Alchemical relative binding free energy (RBFE) calculations based on molecular dynamics (MD) simulations are nowadays a popular approach for the accurate affinity ranking of compounds. MD simulations rely on empirical force field parameters, which strongly influence the accuracy of the predicted affinities. Here, we evaluate the ability of six different small-molecule force fields to predict experimental protein–ligand binding affinities in RBFE calculations on a set of 598 ligands and 22 protein targets. The public force fields OpenFF Parsley and Sage, GAFF, and CGenFF show comparable accuracy, while OPLS3e is significantly more accurate. However, a consensus approach using Sage, GAFF, and CGenFF leads to accuracy comparable to OPLS3e. While Parsley and Sage are performing comparably based on aggregated statistics across the whole dataset, there are differences in terms of outliers. Analysis of the force field reveals that improved parameters lead to significant improvement in the accuracy of affinity predictions on subsets of the dataset involving those parameters. Lower accuracy can not only be attributed to the force field parameters but is also dependent on input preparation and sampling convergence of the calculations. Especially large perturbations and nonconverged simulations lead to less accurate predictions. The input structures, Gromacs force field files, as well as the analysis Python notebooks are available on GitHub.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c00417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c00417","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In drug discovery, the in silico prediction of binding affinity is one of the major means to prioritize compounds for synthesis. Alchemical relative binding free energy (RBFE) calculations based on molecular dynamics (MD) simulations are nowadays a popular approach for the accurate affinity ranking of compounds. MD simulations rely on empirical force field parameters, which strongly influence the accuracy of the predicted affinities. Here, we evaluate the ability of six different small-molecule force fields to predict experimental protein–ligand binding affinities in RBFE calculations on a set of 598 ligands and 22 protein targets. The public force fields OpenFF Parsley and Sage, GAFF, and CGenFF show comparable accuracy, while OPLS3e is significantly more accurate. However, a consensus approach using Sage, GAFF, and CGenFF leads to accuracy comparable to OPLS3e. While Parsley and Sage are performing comparably based on aggregated statistics across the whole dataset, there are differences in terms of outliers. Analysis of the force field reveals that improved parameters lead to significant improvement in the accuracy of affinity predictions on subsets of the dataset involving those parameters. Lower accuracy can not only be attributed to the force field parameters but is also dependent on input preparation and sampling convergence of the calculations. Especially large perturbations and nonconverged simulations lead to less accurate predictions. The input structures, Gromacs force field files, as well as the analysis Python notebooks are available on GitHub.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质-配体结合亲和力预测中的开源力场现状。
在药物发现过程中,结合亲和力的硅学预测是优先合成化合物的主要手段之一。目前,基于分子动力学(MD)模拟的化学相对结合自由能(RBFE)计算是准确排列化合物亲和力的常用方法。MD 模拟依赖于经验力场参数,这些参数对预测亲和力的准确性有很大影响。在这里,我们评估了六种不同的小分子力场在对一组 598 种配体和 22 个蛋白质目标进行 RBFE 计算时预测实验蛋白质-配体结合亲和力的能力。公开力场 OpenFF Parsley 和 Sage、GAFF 和 CGenFF 的准确度相当,而 OPLS3e 的准确度明显更高。不过,使用 Sage、GAFF 和 CGenFF 的共识方法可获得与 OPLS3e 相当的准确度。根据整个数据集的汇总统计数据,Parsley 和 Sage 的表现相当,但在异常值方面存在差异。对力场的分析表明,改进参数可显著提高涉及这些参数的数据集子集的亲和力预测准确度。较低的准确度不仅归因于力场参数,还取决于计算的输入准备和采样收敛。尤其是大扰动和非收敛模拟会导致预测精度降低。输入结构、Gromacs 力场文件以及分析 Python 笔记本可在 GitHub 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
NetSci: A Library for High Performance Biomolecular Simulation Network Analysis Computation. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. AutoDesigner - Core Design, a De Novo Design Algorithm for Chemical Scaffolds: Application to the Design and Synthesis of Novel Selective Wee1 Inhibitors. Modeling Protein-Glycan Interactions with HADDOCK. Retrieval Augmented Docking Using Hierarchical Navigable Small Worlds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1