Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2024-06-19 DOI:10.1039/D4CS00077C
Junzhi Ye, Deepika Gaur, Chenjia Mi, Zijian Chen, Iago López Fernández, Haitao Zhao, Yitong Dong, Lakshminarayana Polavarapu and Robert L. Z. Hoye
{"title":"Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications","authors":"Junzhi Ye, Deepika Gaur, Chenjia Mi, Zijian Chen, Iago López Fernández, Haitao Zhao, Yitong Dong, Lakshminarayana Polavarapu and Robert L. Z. Hoye","doi":"10.1039/D4CS00077C","DOIUrl":null,"url":null,"abstract":"<p >Colloidal semiconductor nanocrystals enable the realization and exploitation of quantum phenomena in a controlled manner, and can be scaled up for commercial uses. These materials have become important for a wide range of applications, from ultrahigh definition displays, to solar cells, quantum computing, bioimaging, optical communications, and many more. Over the last decade, lead-halide perovskite nanocrystals have rapidly gained prominence as efficient semiconductors. Although the majority of studies have focused on large nanocrystals in the weak- to intermediate-confinement regime, quantum dots (QDs) in the strongly-confined regime (with sizes smaller than the Bohr diameter, which ranges from 4–12 nm for lead-halide perovskites) offer unique opportunities, including polarized light emission and color-pure, stable luminescence in the region that is unattainable by perovskites with single-halide compositions. In this tutorial review, we bring together the latest insights into this emerging and rapidly growing area, focusing on the synthesis, steady-state optical properties (including exciton fine-structure splitting), and transient kinetics (including hot carrier cooling) of strongly-confined perovskite QDs. We also discuss recent advances in their applications, including single photon emission for quantum technologies, as well as light-emitting diodes. We finish with our perspectives on future challenges and opportunities for strongly-confined QDs, particularly around improving the control over monodispersity and stability, important fundamental questions on the photophysics, and paths forward to improve the performance of perovskite QDs in light-emitting diodes.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cs/d4cs00077c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d4cs00077c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal semiconductor nanocrystals enable the realization and exploitation of quantum phenomena in a controlled manner, and can be scaled up for commercial uses. These materials have become important for a wide range of applications, from ultrahigh definition displays, to solar cells, quantum computing, bioimaging, optical communications, and many more. Over the last decade, lead-halide perovskite nanocrystals have rapidly gained prominence as efficient semiconductors. Although the majority of studies have focused on large nanocrystals in the weak- to intermediate-confinement regime, quantum dots (QDs) in the strongly-confined regime (with sizes smaller than the Bohr diameter, which ranges from 4–12 nm for lead-halide perovskites) offer unique opportunities, including polarized light emission and color-pure, stable luminescence in the region that is unattainable by perovskites with single-halide compositions. In this tutorial review, we bring together the latest insights into this emerging and rapidly growing area, focusing on the synthesis, steady-state optical properties (including exciton fine-structure splitting), and transient kinetics (including hot carrier cooling) of strongly-confined perovskite QDs. We also discuss recent advances in their applications, including single photon emission for quantum technologies, as well as light-emitting diodes. We finish with our perspectives on future challenges and opportunities for strongly-confined QDs, particularly around improving the control over monodispersity and stability, important fundamental questions on the photophysics, and paths forward to improve the performance of perovskite QDs in light-emitting diodes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强约束胶体卤化铅包晶量子点:从合成到应用。
胶体半导体纳米晶体能够以受控方式实现和利用量子现象,并可按比例放大用于商业用途。这些材料已成为从超高清显示到太阳能电池、量子计算、生物成像、光通信等广泛应用的重要材料。在过去十年中,铅卤化物过氧化物纳米晶体作为高效半导体迅速崛起。虽然大多数研究都集中在弱至中等约束条件下的大型纳米晶体上,但强约束条件下的量子点(QDs)(尺寸小于玻尔直径,铅卤化物类包晶石的玻尔直径在 4-12 纳米之间)提供了独特的机会,包括偏振光发射和颜色纯正、稳定的发光区域,这是单一卤化物成分的包晶石所无法实现的。在这篇教程综述中,我们汇集了对这一新兴且快速发展领域的最新见解,重点介绍了强约束包光体 QD 的合成、稳态光学特性(包括激子精细结构分裂)和瞬态动力学(包括热载流子冷却)。我们还讨论了它们在应用方面的最新进展,包括用于量子技术的单光子发射以及发光二极管。最后,我们将展望强封闭 QDs 未来面临的挑战和机遇,特别是围绕改进对单分散性和稳定性的控制、光物理方面的重要基础问题,以及提高发光二极管中包晶石 QDs 性能的前进道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Metal-phenolic network composites: from fundamentals to applications. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1