Xiaoxuan Wu, Zhengyi Cao, Tianxiang Zhao, Yun Wu, Zhonghui Li, Spyros Doukas, Elefterios Lidorikis, Yu Xue, Liu Liu, Omid Ghaebi, Giancarlo Soavi, Junpeng Lu, Zhenhua Ni and Junjia Wang
{"title":"High efficiency graphene–silicon hybrid-integrated thermal and electro-optical modulators†","authors":"Xiaoxuan Wu, Zhengyi Cao, Tianxiang Zhao, Yun Wu, Zhonghui Li, Spyros Doukas, Elefterios Lidorikis, Yu Xue, Liu Liu, Omid Ghaebi, Giancarlo Soavi, Junpeng Lu, Zhenhua Ni and Junjia Wang","doi":"10.1039/D4NH00160E","DOIUrl":null,"url":null,"abstract":"<p >Graphene modulators are considered a potential solution for achieving high-efficiency light modulation, and graphene–silicon hybrid-integrated modulators are particularly favorable due to their CMOS compatibility and low cost. The exploitation of graphene modulator latent capabilities remains an ongoing endeavour to improve the modulation and energy efficiency. Here, high-efficiency graphene–silicon hybrid-integrated thermal and electro-optical modulators are realized using gold-assisted transfer. We fabricate and demonstrate a microscale thermo-optical modulator with a tuning efficiency of 0.037 nm mW<small><sup>−1</sup></small> and a high heating performance of 67.4 K μm<small><sup>3</sup></small> mW<small><sup>−1</sup></small> on a small active area of 7.54 μm<small><sup>2</sup></small> and a graphene electro-absorption modulator featuring a high speed data rate reaching 56 Gb s<small><sup>−1</sup></small> and a low power consumption of 200 fJ per bit. These devices show superior performance compared to the state of the art devices in terms of high efficiency, low process complexity, and compact device footage, which can support the realization of high-performance graphene–silicon hybrid-integrated photonic circuits with CMOS compatibility.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00160e","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene modulators are considered a potential solution for achieving high-efficiency light modulation, and graphene–silicon hybrid-integrated modulators are particularly favorable due to their CMOS compatibility and low cost. The exploitation of graphene modulator latent capabilities remains an ongoing endeavour to improve the modulation and energy efficiency. Here, high-efficiency graphene–silicon hybrid-integrated thermal and electro-optical modulators are realized using gold-assisted transfer. We fabricate and demonstrate a microscale thermo-optical modulator with a tuning efficiency of 0.037 nm mW−1 and a high heating performance of 67.4 K μm3 mW−1 on a small active area of 7.54 μm2 and a graphene electro-absorption modulator featuring a high speed data rate reaching 56 Gb s−1 and a low power consumption of 200 fJ per bit. These devices show superior performance compared to the state of the art devices in terms of high efficiency, low process complexity, and compact device footage, which can support the realization of high-performance graphene–silicon hybrid-integrated photonic circuits with CMOS compatibility.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture