Chuang Yang, Zhonglin Wang, Lijun Qian, Jingyue Fu, Handong Sun
{"title":"Deciphering the molecular landscape: evolutionary progression from gynecomastia to aggressive male breast cancer.","authors":"Chuang Yang, Zhonglin Wang, Lijun Qian, Jingyue Fu, Handong Sun","doi":"10.1007/s13402-024-00964-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gynecomastia denotes the benign proliferation of glandular breast tissue and stands as a recognized risk factor for male breast cancer. Nonetheless, the underlying carcinogenic mechanisms orchestrating the progression from gynecomastia to cancer remain poorly understood.</p><p><strong>Methods: </strong>This study employed single-cell RNA sequencing (scRNA-seq) to meticulously dissect the cellular landscape of gynecomastia and unravel potential associations with male breast cancer at a single-cell resolution. Pseudotime and evolutionary analyses were executed to delineate the distinct features characterizing gynecomastia and male breast cancer. The TCGA database, along with cell-cell communication analysis and immunohistochemistry staining, was harnessed to validate differential gene expression, specifically focusing on CD13.</p><p><strong>Result: </strong>From the copy number variation profiles and evolutionary tree, we inferred shared mutation characteristics (18p<sup>+</sup> and 18q<sup>+</sup>) underpinning both conditions. The developmental trajectory unveiled an intriguing overlap between gynecomastia and malignant epithelial cells. Moreover, the differential gene CD13 emerged as a common denominator in both gynecomastia and male breast cancer when compared with normal mammary tissue. Cell-cell interaction analysis and communication dynamics within the tumor microenvironment spotlighted distinctions between CD13<sup>+</sup> and CD13<sup>-</sup> subsets, with the former exhibiting elevated expression of FGFR1-FGF7.</p><p><strong>Conclusions: </strong>Our investigation provides novel insights into the evolutionary progression from gynecomastia to male breast cancer, shedding light on the pivotal role of CD13 in driving this transition. The identification of CD13 as a potential therapeutic target suggests the feasibility of CD13-targeted interventions, specifically tailored for male breast cancer treatment.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-00964-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gynecomastia denotes the benign proliferation of glandular breast tissue and stands as a recognized risk factor for male breast cancer. Nonetheless, the underlying carcinogenic mechanisms orchestrating the progression from gynecomastia to cancer remain poorly understood.
Methods: This study employed single-cell RNA sequencing (scRNA-seq) to meticulously dissect the cellular landscape of gynecomastia and unravel potential associations with male breast cancer at a single-cell resolution. Pseudotime and evolutionary analyses were executed to delineate the distinct features characterizing gynecomastia and male breast cancer. The TCGA database, along with cell-cell communication analysis and immunohistochemistry staining, was harnessed to validate differential gene expression, specifically focusing on CD13.
Result: From the copy number variation profiles and evolutionary tree, we inferred shared mutation characteristics (18p+ and 18q+) underpinning both conditions. The developmental trajectory unveiled an intriguing overlap between gynecomastia and malignant epithelial cells. Moreover, the differential gene CD13 emerged as a common denominator in both gynecomastia and male breast cancer when compared with normal mammary tissue. Cell-cell interaction analysis and communication dynamics within the tumor microenvironment spotlighted distinctions between CD13+ and CD13- subsets, with the former exhibiting elevated expression of FGFR1-FGF7.
Conclusions: Our investigation provides novel insights into the evolutionary progression from gynecomastia to male breast cancer, shedding light on the pivotal role of CD13 in driving this transition. The identification of CD13 as a potential therapeutic target suggests the feasibility of CD13-targeted interventions, specifically tailored for male breast cancer treatment.
Cellular OncologyBiochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.