Harmful planktonic Microcystis and benthic Oscillatoria-induced toxicological effects on the Asian clam (Corbicula fluminea): A survey on histopathology, behavior, oxidative stress, apoptosis and inflammation
Huiting Yang , Xiaohong Gu , Huihui Chen , Qingfei Zeng , Zhigang Mao , You Ge , Yujia Yao
{"title":"Harmful planktonic Microcystis and benthic Oscillatoria-induced toxicological effects on the Asian clam (Corbicula fluminea): A survey on histopathology, behavior, oxidative stress, apoptosis and inflammation","authors":"Huiting Yang , Xiaohong Gu , Huihui Chen , Qingfei Zeng , Zhigang Mao , You Ge , Yujia Yao","doi":"10.1016/j.cbpc.2024.109961","DOIUrl":null,"url":null,"abstract":"<div><p>Cyanobacterial blooms are worldwide distributed and threaten aquatic ecosystems and public health. The current studies mainly focus on the adverse impacts of planktonic cyanobacteria or pure cyanotoxins, while the benthic cyanobacteria-induced ecotoxic effects are relatively lacking. The cyanobacterial cell-induced toxic effects on aquatic organisms might be more serious and complex than the pure cyanotoxins and crude extracts of cyanobacteria. This study explored the chronic effects of toxin-producing planktonic <em>Microcystis aeruginosa</em> (producing microcystin) and benthic <em>Oscillatoria</em> sp. (producing cylindrospermopsin) on the behaviors, tissue structures, oxidative stress, apoptosis, and inflammation of the Asian clams (<em>Corbicula fluminea</em>) under 28-d exposure. The data showed that both <em>M. aeruginosa</em> and <em>Oscillatoria</em> sp. can decrease the behaviors associated with the feeding activity and induce tissue damage (i.e. gill and digestive gland) in clams. Furthermore, two kinds of cyanobacteria can alter the antioxidant enzyme activities and increase antioxidant, lipid oxidation product, and neurotransmitter degrading enzyme levels in clams. Moreover, two kinds of cyanobacteria can activate apoptosis-related enzyme activities and enhance the proinflammatory cytokine levels of clams. In addition, two kinds of cyanobacteria can disturb the transcript levels of genes linked with oxidative stress, apoptosis, and inflammation. These results suggested harmful cyanobacteria can threaten the survival and health of clams, while the benthic cyanobacteria-induced adverse effects deserve more attention. Our finding also indicated that it is necessary to focus on the entire algal cell-induced ecotoxicity when concerning the ecological impacts of cyanobacterial blooms.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001297","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacterial blooms are worldwide distributed and threaten aquatic ecosystems and public health. The current studies mainly focus on the adverse impacts of planktonic cyanobacteria or pure cyanotoxins, while the benthic cyanobacteria-induced ecotoxic effects are relatively lacking. The cyanobacterial cell-induced toxic effects on aquatic organisms might be more serious and complex than the pure cyanotoxins and crude extracts of cyanobacteria. This study explored the chronic effects of toxin-producing planktonic Microcystis aeruginosa (producing microcystin) and benthic Oscillatoria sp. (producing cylindrospermopsin) on the behaviors, tissue structures, oxidative stress, apoptosis, and inflammation of the Asian clams (Corbicula fluminea) under 28-d exposure. The data showed that both M. aeruginosa and Oscillatoria sp. can decrease the behaviors associated with the feeding activity and induce tissue damage (i.e. gill and digestive gland) in clams. Furthermore, two kinds of cyanobacteria can alter the antioxidant enzyme activities and increase antioxidant, lipid oxidation product, and neurotransmitter degrading enzyme levels in clams. Moreover, two kinds of cyanobacteria can activate apoptosis-related enzyme activities and enhance the proinflammatory cytokine levels of clams. In addition, two kinds of cyanobacteria can disturb the transcript levels of genes linked with oxidative stress, apoptosis, and inflammation. These results suggested harmful cyanobacteria can threaten the survival and health of clams, while the benthic cyanobacteria-induced adverse effects deserve more attention. Our finding also indicated that it is necessary to focus on the entire algal cell-induced ecotoxicity when concerning the ecological impacts of cyanobacterial blooms.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.