{"title":"Risk Assessment for Nuclear Terrorism Probability and Its Application on a Hypothetical Nuclear Facility.","authors":"Joeun L Kot, Jason T Harris","doi":"10.1097/HP.0000000000001842","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Radiation protection contains the key elements of nuclear safety and security. Despite the overlap between nuclear safety and security, their objectives differ fundamentally, focusing on unintentional accidents and intentional malicious events, respectively. As such, the Potential Facility Risk Index (PFRI), originally created for security purposes, has evolved into an approach that combines conventional probabilistic risk assessment (PRA), which is a widely employed method to evaluate the safety risks of nuclear facilities. This research has developed a risk assessment model within the PFRI framework to calculate the probability of nuclear terrorism. Three essential components of the model are integrated: an analysis of historical nuclear terrorism data to determine an initial threat frequency; the target-specific factor using analytical hierarchy process (AHP) target attractiveness analysis; and the adversary motivation factor based on site-specific social influences from the Profiles of Individual Radicalization in the United States (PIRUS) dataset. Applied to a hypothetical nuclear facility, the model produces a nuclear terrorism probability of 8.97 × 10 -3 y - 1 . The systematic methodology proposed in the study enables the derivation of nuclear terrorism probability with results in the same risk unit as safety risk assessment. This method allows decision makers to seamlessly incorporate nuclear safety and security risk assessments, offering a comprehensive perspective. Consequently, it enriches comprehension of nuclear facility risks and establishes the groundwork for future advancements.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"13-23"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001842","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Radiation protection contains the key elements of nuclear safety and security. Despite the overlap between nuclear safety and security, their objectives differ fundamentally, focusing on unintentional accidents and intentional malicious events, respectively. As such, the Potential Facility Risk Index (PFRI), originally created for security purposes, has evolved into an approach that combines conventional probabilistic risk assessment (PRA), which is a widely employed method to evaluate the safety risks of nuclear facilities. This research has developed a risk assessment model within the PFRI framework to calculate the probability of nuclear terrorism. Three essential components of the model are integrated: an analysis of historical nuclear terrorism data to determine an initial threat frequency; the target-specific factor using analytical hierarchy process (AHP) target attractiveness analysis; and the adversary motivation factor based on site-specific social influences from the Profiles of Individual Radicalization in the United States (PIRUS) dataset. Applied to a hypothetical nuclear facility, the model produces a nuclear terrorism probability of 8.97 × 10 -3 y - 1 . The systematic methodology proposed in the study enables the derivation of nuclear terrorism probability with results in the same risk unit as safety risk assessment. This method allows decision makers to seamlessly incorporate nuclear safety and security risk assessments, offering a comprehensive perspective. Consequently, it enriches comprehension of nuclear facility risks and establishes the groundwork for future advancements.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.