Machine learning-enhanced predictive modeling for arbitrary deterministic lateral displacement design and test.

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2024-06-17 DOI:10.1109/TNB.2024.3415365
Yidan Zhang, Junchao Wang, Jinkai Chen, Guodong Su, Wen-Sheng Zhao, Jun Liu
{"title":"Machine learning-enhanced predictive modeling for arbitrary deterministic lateral displacement design and test.","authors":"Yidan Zhang, Junchao Wang, Jinkai Chen, Guodong Su, Wen-Sheng Zhao, Jun Liu","doi":"10.1109/TNB.2024.3415365","DOIUrl":null,"url":null,"abstract":"<p><p>The separation of biological particles like cells and macromolecules from liquid samples is vital in clinical medicine, supporting liquid biopsies and diagnostics. Deterministic Lateral Displacement (DLD) is prominent for sorting particles in microfluidics by size. However, the design, fabrication, and testing of DLDs are complex and time-consuming. Researchers typically rely on finite element analysis to predict particle trajectories, which are crucial in evaluating the performance of DLD. Traditional particle trajectory predictions through finite element analysis often inaccurately reflect experimental results due to manufacturing and experimental variabilities. To address this issue, we introduced a machine learning-enhanced approach, combining past experimental data and advanced modeling techniques. Our method, using a dataset of 132 experiments from 40 DLD chips and integrating finite element simulation with a microfluidic-optimized particle simulation algorithm (MOPSA) and a Random Forest model, improves trajectory prediction and critical size determination without physical tests. This enhanced accuracy in simulation across various DLD chips speeds up development. Our model, validated against three DLD chip designs, showed a high correlation between predicted and experimental particle trajectories, streamlining chip development for clinical applications.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2024.3415365","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The separation of biological particles like cells and macromolecules from liquid samples is vital in clinical medicine, supporting liquid biopsies and diagnostics. Deterministic Lateral Displacement (DLD) is prominent for sorting particles in microfluidics by size. However, the design, fabrication, and testing of DLDs are complex and time-consuming. Researchers typically rely on finite element analysis to predict particle trajectories, which are crucial in evaluating the performance of DLD. Traditional particle trajectory predictions through finite element analysis often inaccurately reflect experimental results due to manufacturing and experimental variabilities. To address this issue, we introduced a machine learning-enhanced approach, combining past experimental data and advanced modeling techniques. Our method, using a dataset of 132 experiments from 40 DLD chips and integrating finite element simulation with a microfluidic-optimized particle simulation algorithm (MOPSA) and a Random Forest model, improves trajectory prediction and critical size determination without physical tests. This enhanced accuracy in simulation across various DLD chips speeds up development. Our model, validated against three DLD chip designs, showed a high correlation between predicted and experimental particle trajectories, streamlining chip development for clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于任意确定性侧向位移设计和测试的机器学习增强型预测建模。
从液体样本中分离细胞和大分子等生物颗粒在临床医学中至关重要,可为液体活检和诊断提供支持。确定性侧向位移(DLD)是微流体技术中按尺寸分拣颗粒的主要方法。然而,DLD 的设计、制造和测试既复杂又耗时。研究人员通常依靠有限元分析来预测粒子轨迹,这对评估 DLD 的性能至关重要。由于制造和实验方面的差异,通过有限元分析预测粒子轨迹的传统方法往往不能准确反映实验结果。为了解决这个问题,我们结合以往的实验数据和先进的建模技术,引入了一种机器学习增强型方法。我们的方法使用了来自 40 个 DLD 芯片的 132 个实验数据集,并将有限元仿真与微流体优化粒子仿真算法 (MOPSA) 和随机森林模型相结合,无需物理测试即可改进轨迹预测和临界尺寸确定。在各种 DLD 芯片上提高模拟的准确性可加快研发速度。我们的模型针对三种 DLD 芯片设计进行了验证,结果表明粒子轨迹预测与实验之间具有很高的相关性,从而简化了临床应用的芯片开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. "Galaxy" encoding: toward high storage density and low cost. 2024 Index IEEE Transactions on NanoBioscience Vol. 23 Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1