{"title":"Restoration of thymic T-cell development by bone marrow transplantation in mouse radiation lymphomagenesis.","authors":"Tsuguhide Takeshima, Sumitaka Hasegawa","doi":"10.1093/jrr/rrae045","DOIUrl":null,"url":null,"abstract":"<p><p>Fractionated total body irradiation (TBI) with X-rays induces thymic lymphoma/leukemia (TL) in C57BL/6 mice. Radiation-induced mouse TL (RITL) can be prevented by bone marrow transplantation (BMT) of unirradiated BM cells. However, the mechanisms underlying the prevention of RITL with BMT remain unclear. Here, we show that BMT restores thymic T-cell differentiation in mice subjected to TBI. TBI (four times of 1.8 Gy X-rays weekly) was conducted with C57BL/6 mice. BMT was performed immediately after the last irradiation of TBI in mice by transplantation of BM cells isolated from enhanced green fluorescence protein (eGFP) transgenic mice. Thymic cell numbers were drastically decreased in TBI and TBI + BMT mice compared to those in non-irradiated mice. Flow cytometry showed a dramatic decrease in double negative (DN, CD4-CD8-) thymocytes, especially DN2 (CD25+CD44+) and DN3 (CD25+CD44-) subpopulations, in the TBI mice on Day 10 after the last irradiation. In contrast, the DN2 and DN3 populations were recovered in TBI + BMT mice. Interestingly, these restored DN2 and DN3 cells mainly differentiated from eGFP-negative recipient cells but not from eGFP-positive donor cells, suggesting that transplanted BM cells may interact with recipient cells to restore thymic T-cell development in the RITL model. Taken together, our findings highlight the significance of restoring thymic T-cell differentiation by BMT in RITL prevention.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"555-560"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrae045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fractionated total body irradiation (TBI) with X-rays induces thymic lymphoma/leukemia (TL) in C57BL/6 mice. Radiation-induced mouse TL (RITL) can be prevented by bone marrow transplantation (BMT) of unirradiated BM cells. However, the mechanisms underlying the prevention of RITL with BMT remain unclear. Here, we show that BMT restores thymic T-cell differentiation in mice subjected to TBI. TBI (four times of 1.8 Gy X-rays weekly) was conducted with C57BL/6 mice. BMT was performed immediately after the last irradiation of TBI in mice by transplantation of BM cells isolated from enhanced green fluorescence protein (eGFP) transgenic mice. Thymic cell numbers were drastically decreased in TBI and TBI + BMT mice compared to those in non-irradiated mice. Flow cytometry showed a dramatic decrease in double negative (DN, CD4-CD8-) thymocytes, especially DN2 (CD25+CD44+) and DN3 (CD25+CD44-) subpopulations, in the TBI mice on Day 10 after the last irradiation. In contrast, the DN2 and DN3 populations were recovered in TBI + BMT mice. Interestingly, these restored DN2 and DN3 cells mainly differentiated from eGFP-negative recipient cells but not from eGFP-positive donor cells, suggesting that transplanted BM cells may interact with recipient cells to restore thymic T-cell development in the RITL model. Taken together, our findings highlight the significance of restoring thymic T-cell differentiation by BMT in RITL prevention.
期刊介绍:
The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO).
Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal.
Articles considered fall into two broad categories:
Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable.
Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences.
Please be advised that JRR does not accept any papers of pure physics or chemistry.
The journal is bimonthly, and is edited and published by the JRR Editorial Committee.