CONSTANS alters the circadian clock in Arabidopsis thaliana.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-08-05 Epub Date: 2024-06-17 DOI:10.1016/j.molp.2024.06.006
Pedro de Los Reyes, Gloria Serrano-Bueno, Francisco J Romero-Campero, He Gao, Jose M Romero, Federico Valverde
{"title":"CONSTANS alters the circadian clock in Arabidopsis thaliana.","authors":"Pedro de Los Reyes, Gloria Serrano-Bueno, Francisco J Romero-Campero, He Gao, Jose M Romero, Federico Valverde","doi":"10.1016/j.molp.2024.06.006","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1204-1220"},"PeriodicalIF":17.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.06.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls plant response to day length, is one of the most important pathways controlling flowering. In Arabidopsis photoperiodic flowering, CONSTANS (CO) is the central gene activating the expression of the florigen FLOWERING LOCUS T (FT) in the leaves at the end of a long day. The circadian clock strongly regulates CO expression. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments, and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with altered CO expression showed a different internal clock period, measured by daily leaf rhythmic movements. We showed that CO upregulates the expression of key genes related to the circadian clock, such as CCA1, LHY, PRR5, and GI, at the end of a long day by binding to specific sites on their promoters. Moreover, a high number of PRR5-repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Taken together, our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, providing seasonal information to the circadian system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CONSTANS 改变了拟南芥的昼夜节律。
植物是一种无柄生物,具有高度可塑性的发育策略,以适应环境。在这些过程中,花期转换对确保繁殖成功至关重要,并受到多个内部和外部遗传网络的精细调控。控制植物对昼长反应的光周期途径是控制开花的最重要途径之一。在拟南芥的光周期开花过程中,CONSTANS(CO)是一个核心基因,它能在长日照结束时激活叶片中花粉基因 FLOWERING LOCUS T(FT)的表达。昼夜节律强烈调节 CO 的表达。然而,迄今为止,还没有关于从光周期途径反馈回昼夜节律钟的证据。利用转录网络,我们确定了调控昼夜节律钟与光周期途径之间相互作用的相关网络模式。通过基因表达、染色质免疫沉淀实验和表型分析,我们阐明了 CO 对昼夜节律钟的作用。CO表达改变的植物表现出不同的内部时钟周期,这是由每日叶片节律性运动测量的。我们的研究表明,CO 可以通过与 CCA1、LHY、PRR5 和 GI 等昼夜节律相关的关键基因启动子上的特定位点结合,在漫长的一天结束时激活这些基因。此外,大量受 PRR5 抑制的靶基因被 CO 上调,这也可以解释 CO 促进相位转换的原因。CO-PRR5 复合物与 bZIP 转录因子 HY5 相互作用,有助于将复合物定位在时钟基因的启动子上。我们的研究结果表明,一氧化碳可能与昼夜节律钟之间存在反馈回路,为昼夜节律系统提供季节信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
Cotton2035: From Genomics Research to Optimized Breeding. New molecular chaperone roles for CO2 assimilation in early land plants. NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells. A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. Maize2035: A decadal vision for intelligent maize breeding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1