Il34 rescues metronidazole-induced impairment of spinal cord regeneration in zebrafish central nervous system.

Q3 Medicine 遗传 Pub Date : 2024-06-20 DOI:10.16288/j.yczz.24-083
Ji-Xiang Liu, Si-Ting Lai, Jing Bai, Jin Xu
{"title":"Il34 rescues metronidazole-induced impairment of spinal cord regeneration in zebrafish central nervous system.","authors":"Ji-Xiang Liu, Si-Ting Lai, Jing Bai, Jin Xu","doi":"10.16288/j.yczz.24-083","DOIUrl":null,"url":null,"abstract":"<p><p>Metronidazole (MTZ), a commonly used anti-infective drug in clinical practice, has also been employed as a prodrug in cell-targeted ablation systems in scientific research, exhibiting significant application value. However, it has been demonstrated that MTZ can induce neurotoxic symptoms to some extent during its use, and there is currently a lack of effective means to circumvent its toxicity in both clinical and research settings, which limits its application. Therefore, exploring the specific mechanisms underlying MTZ-induced neurotoxic symptoms and elucidating countermeasures will enhance the practical value of MTZ. In this study, using a zebrafish spinal cord injury regeneration model, we confirmed that MTZ neurotoxicity leads to impaired axon regeneration in the central nervous system. By overexpressing <i>il34</i> in the central nervous system of zebrafish, we eliminated the inhibitory effect of MTZ on axonal regeneration and demonstrated that the pro-regenerative effect against MTZ neurotoxicity is not caused by excessive macrophages/microglia chemoattracted by interleukin 34(Il34). Transcriptome sequencing analysis and GO enrichment analysis of differentially expressed genes between groups revealed that Il34 may counteract MTZ neurotoxicity and promote spinal cord injury repair through biological processes that enhance cellular adhesion and cell location. In summary, our work uncovers a possible cause of MTZ neurotoxicity and provides a new perspective for eliminating MTZ toxicity.</p>","PeriodicalId":35536,"journal":{"name":"遗传","volume":"46 6","pages":"478-489"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遗传","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.16288/j.yczz.24-083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Metronidazole (MTZ), a commonly used anti-infective drug in clinical practice, has also been employed as a prodrug in cell-targeted ablation systems in scientific research, exhibiting significant application value. However, it has been demonstrated that MTZ can induce neurotoxic symptoms to some extent during its use, and there is currently a lack of effective means to circumvent its toxicity in both clinical and research settings, which limits its application. Therefore, exploring the specific mechanisms underlying MTZ-induced neurotoxic symptoms and elucidating countermeasures will enhance the practical value of MTZ. In this study, using a zebrafish spinal cord injury regeneration model, we confirmed that MTZ neurotoxicity leads to impaired axon regeneration in the central nervous system. By overexpressing il34 in the central nervous system of zebrafish, we eliminated the inhibitory effect of MTZ on axonal regeneration and demonstrated that the pro-regenerative effect against MTZ neurotoxicity is not caused by excessive macrophages/microglia chemoattracted by interleukin 34(Il34). Transcriptome sequencing analysis and GO enrichment analysis of differentially expressed genes between groups revealed that Il34 may counteract MTZ neurotoxicity and promote spinal cord injury repair through biological processes that enhance cellular adhesion and cell location. In summary, our work uncovers a possible cause of MTZ neurotoxicity and provides a new perspective for eliminating MTZ toxicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Il34能挽救甲硝唑诱导的斑马鱼中枢神经系统脊髓再生障碍。
甲硝唑(MTZ)是临床上常用的抗感染药物,在科学研究中也被用作细胞靶向消融系统的原药,具有重要的应用价值。然而,有研究表明,MTZ 在使用过程中会在一定程度上诱发神经毒性症状,目前在临床和研究中都缺乏有效的手段来规避其毒性,这限制了其应用。因此,探索MTZ诱发神经毒性症状的具体机制并阐明对策将提高MTZ的实用价值。在本研究中,我们利用斑马鱼脊髓损伤再生模型证实了MTZ神经毒性会导致中枢神经系统轴突再生受损。通过在斑马鱼中枢神经系统中过表达il34,我们消除了MTZ对轴突再生的抑制作用,并证明了抗MTZ神经毒性的促再生作用不是由白细胞介素34(Il34)过度趋化的巨噬细胞/小胶质细胞引起的。转录组测序分析和不同组间差异表达基因的GO富集分析表明,Il34可能通过增强细胞粘附和细胞定位的生物学过程来抵消MTZ的神经毒性并促进脊髓损伤的修复。总之,我们的研究发现了 MTZ 神经毒性的可能原因,为消除 MTZ 的毒性提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
遗传
遗传 Medicine-Medicine (all)
CiteScore
2.50
自引率
0.00%
发文量
6699
期刊介绍:
期刊最新文献
Design and practice of educational experiments on genetic epistasis. Drug resistance mechanism of anti-angiogenesis therapy in tumor. Dual-localization signals enhance mitochondrial targeted presentation of engineered proteins. Identification and functional characterization of CD209 homologous genes in zebrafish. Progress on the mining of functional genes of Lonicera japonica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1