{"title":"Climate change and plant rhizosphere microbiomes: an experiential course-embedded research project.","authors":"James A Parejko","doi":"10.1128/jmbe.00046-24","DOIUrl":null,"url":null,"abstract":"<p><p>The current and ongoing challenges brought on by climate change will require future scientists who have hands-on experience using advanced molecular techniques, can work with large data sets, and can make correlations between metadata and microbial diversity. A course-embedded research project can prepare students to answer complex research questions that might help plants adapt to climate change. The project described herein uses plants as a host to study the impact of climate change-induced drought on host-microbe interactions through next-generation DNA sequencing and analysis using a command-line program. Specifically, the project studies the impact of simulated drought on the rhizosphere microbiome of Fast Plants rapid cycling <i>Brassica rapa</i> using inexpensive greenhouse supplies and 16S rRNA V3/V4 Illumina sequencing. Data analysis is performed with the freely accessible Python-based microbiome bioinformatics platform QIIME 2.</p>","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00046-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
The current and ongoing challenges brought on by climate change will require future scientists who have hands-on experience using advanced molecular techniques, can work with large data sets, and can make correlations between metadata and microbial diversity. A course-embedded research project can prepare students to answer complex research questions that might help plants adapt to climate change. The project described herein uses plants as a host to study the impact of climate change-induced drought on host-microbe interactions through next-generation DNA sequencing and analysis using a command-line program. Specifically, the project studies the impact of simulated drought on the rhizosphere microbiome of Fast Plants rapid cycling Brassica rapa using inexpensive greenhouse supplies and 16S rRNA V3/V4 Illumina sequencing. Data analysis is performed with the freely accessible Python-based microbiome bioinformatics platform QIIME 2.