APOE genotype, hippocampal volume, and cognitive reserve predict improvement by cognitive training in older adults without dementia: a randomized controlled trial.
Pedro Montejo Carrasco, Mercedes Montenegro-Peña, David Prada Crespo, Inmaculada Rodríguez Rojo, Ana Barabash Bustelo, Borja Montejo Rubio, Alberto Marcos Dolado, Fernando Maestú Unturbe, María Luisa Delgado Losada
{"title":"APOE genotype, hippocampal volume, and cognitive reserve predict improvement by cognitive training in older adults without dementia: a randomized controlled trial.","authors":"Pedro Montejo Carrasco, Mercedes Montenegro-Peña, David Prada Crespo, Inmaculada Rodríguez Rojo, Ana Barabash Bustelo, Borja Montejo Rubio, Alberto Marcos Dolado, Fernando Maestú Unturbe, María Luisa Delgado Losada","doi":"10.1007/s10339-024-01202-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive training (CT) programs aim to improve cognitive performance and impede its decline. Thus, defining the characteristics of individuals who can benefit from these interventions is essential. Our objectives were to assess if the cognitive reserve (CR), APOE genotype (e4 carriers/non-carriers) and/or hippocampal volume might predict the effectiveness of a CT program. Participants were older adults without dementia (n = 226), randomized into parallel experimental and control groups. The assessment consisted of a neuropsychological protocol and additional data regarding total intracranial, gray matter, left/right hippocampus volume; APOE genotype; and Cognitive Reserve (CR). The intervention involved multifactorial CT (30 sessions, 90 min each), with an evaluation pre- and post-training (at six months); the control group simply following the center's routine activities. The primary outcome measures were the change in cognitive performance and the predictors of change. The results show that APOE-e4 non-carriers (79.1%) with a larger left hippocampal volume achieved better gains in semantic verbal fluency (R<sup>2</sup> = .19). Subjects with a larger CR and a greater gray matter volume better improved their processing speed (R<sup>2</sup> = .18). Age was correlated with the improvement in executive functions, such that older age predicts less improvement (R<sup>2</sup> = .07). Subjects with a larger left hippocampal volume achieved more significant gains in general cognitive performance (R<sup>2</sup> = .087). In conclusion, besides the program itself, the effectiveness of CT depends on age, biological factors like genotype and brain volume, and CR. Thus, to achieve better results through a CT, it is essential to consider the different characteristics of the participants, including genetic factors.Trial registration: Trial retrospectively registered on January 29th, 2020-(ClinicalTrials.gov -NCT04245579).</p>","PeriodicalId":47638,"journal":{"name":"Cognitive Processing","volume":" ","pages":"673-689"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Processing","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10339-024-01202-3","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive training (CT) programs aim to improve cognitive performance and impede its decline. Thus, defining the characteristics of individuals who can benefit from these interventions is essential. Our objectives were to assess if the cognitive reserve (CR), APOE genotype (e4 carriers/non-carriers) and/or hippocampal volume might predict the effectiveness of a CT program. Participants were older adults without dementia (n = 226), randomized into parallel experimental and control groups. The assessment consisted of a neuropsychological protocol and additional data regarding total intracranial, gray matter, left/right hippocampus volume; APOE genotype; and Cognitive Reserve (CR). The intervention involved multifactorial CT (30 sessions, 90 min each), with an evaluation pre- and post-training (at six months); the control group simply following the center's routine activities. The primary outcome measures were the change in cognitive performance and the predictors of change. The results show that APOE-e4 non-carriers (79.1%) with a larger left hippocampal volume achieved better gains in semantic verbal fluency (R2 = .19). Subjects with a larger CR and a greater gray matter volume better improved their processing speed (R2 = .18). Age was correlated with the improvement in executive functions, such that older age predicts less improvement (R2 = .07). Subjects with a larger left hippocampal volume achieved more significant gains in general cognitive performance (R2 = .087). In conclusion, besides the program itself, the effectiveness of CT depends on age, biological factors like genotype and brain volume, and CR. Thus, to achieve better results through a CT, it is essential to consider the different characteristics of the participants, including genetic factors.Trial registration: Trial retrospectively registered on January 29th, 2020-(ClinicalTrials.gov -NCT04245579).
期刊介绍:
Cognitive Processing - International Quarterly of Cognitive Science is a peer-reviewed international journal that publishes innovative contributions in the multidisciplinary field of cognitive science. Its main purpose is to stimulate research and scientific interaction through communication between specialists in different fields on topics of common interest and to promote an interdisciplinary understanding of the diverse topics in contemporary cognitive science. Cognitive Processing is articulated in the following sections:Cognitive DevelopmentCognitive Models of Risk and Decision MakingCognitive NeuroscienceCognitive PsychologyComputational Cognitive SciencesPhilosophy of MindNeuroimaging and Electrophysiological MethodsPsycholinguistics and Computational linguisticsQuantitative Psychology and Formal Theories in Cognitive ScienceSocial Cognition and Cognitive Science of Culture