The Ecosystem as Super-Organ/ism, Revisited: Scaling Hydraulics to Forests under Climate Change.

IF 2.2 3区 生物学 Q1 ZOOLOGY Integrative and Comparative Biology Pub Date : 2024-09-17 DOI:10.1093/icb/icae073
Jeffrey D Wood, Matteo Detto, Marvin Browne, Nathan J B Kraft, Alexandra G Konings, Joshua B Fisher, Gregory R Quetin, Anna T Trugman, Troy S Magney, Camila D Medeiros, Nidhi Vinod, Thomas N Buckley, Lawren Sack
{"title":"The Ecosystem as Super-Organ/ism, Revisited: Scaling Hydraulics to Forests under Climate Change.","authors":"Jeffrey D Wood, Matteo Detto, Marvin Browne, Nathan J B Kraft, Alexandra G Konings, Joshua B Fisher, Gregory R Quetin, Anna T Trugman, Troy S Magney, Camila D Medeiros, Nidhi Vinod, Thomas N Buckley, Lawren Sack","doi":"10.1093/icb/icae073","DOIUrl":null,"url":null,"abstract":"<p><p>Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae073","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新审视作为超级器官/智能系统的生态系统:气候变化下的森林水力学。
群落生态学的经典辩论集中在将生态系统视为超级器官或有机体的复杂性上。从这种角度进行新的思考,可以阐明森林二氧化碳(CO2)吸收和水蒸气流失的动态机制,这对预测和管理地球生态系统和气候系统的未来非常重要。在此,我们提供了一个将生态系统特征视为聚集性、系统性或突发性的标准,即把生态系统视为其个体的集合体,或隐喻性或字面意义上的超级器官或有机体。我们回顾了最近的一些方法,这些方法将为器官和生物体开发的植物水分关系(水力学)概念放大,以实现和解释生态系统级别的测量。我们将重点放在三个群落尺度的水分关系特征上,这些特征有可能为二氧化碳和水气交换以及森林生产力的气候变化响应提供机理上的见解:叶片水势(Ψ冠层)、压力体积曲线(eco-PV)和水力传导(Keco)。这些分析可以揭示更多生态系统尺度参数,这些参数与通常量化的叶片或植物参数(如枯萎点和水力脆弱性)类似,可能成为森林应对干旱(包括生长停止、死亡和易燃性)的阈值。我们将这些概念结合到一个新颖的框架中,利用 Keco 和生态-PV 曲线的测量结果预测Ψ冠层及其在干旱期间接近临界阈值的情况。因此,我们描述了如何从器官和生物尺度扩展水分关系概念,以揭示植被与气候相互作用的水力制约因素,并为森林用水和生产力提供新的机制理解和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
期刊最新文献
Big fish can't jump? Allometry of terrestrial jumping in cyprinodontiform fishes. Combining Morphological Characteristics and DNA Barcoding Techniques Confirm Sea Urchins of the Genus Echinometra (Echinodermata: Echinoidea) in Marine Habitat Located at Extreme Regions of the Caribbean Sea. Marine Debris Harbor Unique, yet Functionally Similar Cryptofauna Communities. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Hurricane Irma Linked to Coral Skeletal Density Shifts on the Florida Keys Reef Tract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1