Efficient CdS/Sb2S3 interfacial modification using sodium borohydride etching for enhanced performance of low-cost full-inorganic antimony-based solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-06-17 DOI:10.1016/j.solmat.2024.112991
Hangyu Li , Minghong Rui , Yuan Li , Sumei Wang , Guodong Xia
{"title":"Efficient CdS/Sb2S3 interfacial modification using sodium borohydride etching for enhanced performance of low-cost full-inorganic antimony-based solar cells","authors":"Hangyu Li ,&nbsp;Minghong Rui ,&nbsp;Yuan Li ,&nbsp;Sumei Wang ,&nbsp;Guodong Xia","doi":"10.1016/j.solmat.2024.112991","DOIUrl":null,"url":null,"abstract":"<div><p>Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) is a promising material for photovoltaic applications because of its high absorption coefficient, environmental friendliness and low cost. Nevertheless, the conversion efficiency of Sb<sub>2</sub>S<sub>3</sub> solar cells severely deviates from theoretical predictions, and the interface between CdS and Sb<sub>2</sub>S<sub>3</sub> is crucial for the overall performance. In this study, we conducted a highly effective sodium borohydride (NaBH<sub>4</sub>) etching to modify the CdS/Sb<sub>2</sub>S<sub>3</sub> interface, aiming to improve the device performance. The NaBH<sub>4</sub> etching led to a reduction in surface roughness and an enhancement in the hydrophilicity of the CdS layer, creating a more conducive environment for the subsequent deposition of the Sb<sub>2</sub>S<sub>3</sub> absorber layer. Simultaneously, the reduction of cadmium oxide serves to optimize interfacial energy alignment and minimize recombination losses. Ultimately, our full-inorganic Sb<sub>2</sub>S<sub>3</sub> solar cells, featuring the configuration FTO/CdS/Sb<sub>2</sub>S<sub>3</sub>/MnS/Carbon, attain a PCE of 6.26%. This marks a significant improvement of 15% compared to cells without NaBH<sub>4</sub> etching. This study presents a feasible and efficient perspective for modifying the CdS/Sb<sub>2</sub>S<sub>3</sub> interface, thereby enhancing the performance of Sb-based solar cells.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824003039","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Antimony sulfide (Sb2S3) is a promising material for photovoltaic applications because of its high absorption coefficient, environmental friendliness and low cost. Nevertheless, the conversion efficiency of Sb2S3 solar cells severely deviates from theoretical predictions, and the interface between CdS and Sb2S3 is crucial for the overall performance. In this study, we conducted a highly effective sodium borohydride (NaBH4) etching to modify the CdS/Sb2S3 interface, aiming to improve the device performance. The NaBH4 etching led to a reduction in surface roughness and an enhancement in the hydrophilicity of the CdS layer, creating a more conducive environment for the subsequent deposition of the Sb2S3 absorber layer. Simultaneously, the reduction of cadmium oxide serves to optimize interfacial energy alignment and minimize recombination losses. Ultimately, our full-inorganic Sb2S3 solar cells, featuring the configuration FTO/CdS/Sb2S3/MnS/Carbon, attain a PCE of 6.26%. This marks a significant improvement of 15% compared to cells without NaBH4 etching. This study presents a feasible and efficient perspective for modifying the CdS/Sb2S3 interface, thereby enhancing the performance of Sb-based solar cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用硼氢化钠蚀刻对 CdS/Sb2S3 进行高效界面修饰,以提高低成本全无机锑基太阳能电池的性能
硫化锑(Sb2S3)具有吸收系数高、环保和成本低的特点,是一种前景广阔的光伏应用材料。然而,Sb2S3 太阳能电池的转换效率严重偏离理论预测,而 CdS 与 Sb2S3 之间的界面对整体性能至关重要。在本研究中,我们采用了一种高效的硼氢化钠(NaBH4)蚀刻法来改变 CdS/Sb2S3 界面,旨在提高器件性能。NaBH4 刻蚀降低了表面粗糙度,增强了 CdS 层的亲水性,为随后 Sb2S3 吸收层的沉积创造了更有利的环境。同时,氧化镉的还原还能优化界面能量排列,最大限度地减少重组损耗。最终,我们采用 FTO/CdS/Sb2S3/MnS/Carbon 配置的全无机 Sb2S3 太阳能电池的 PCE 达到了 6.26%。与未进行 NaBH4 蚀刻的电池相比,PCE 明显提高了 15%。这项研究为改造 CdS/Sb2S3 界面,从而提高锑基太阳能电池的性能提供了一个可行而有效的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction A high effciency (11.06 %) CZTSSe solar cell achieved by combining Ag doping in absorber and BxCd1-xs/caztsse heterojunction annealing Multifunctional daytime radiative cooler resistant to UV aging Generic strategy to prepare PPy-based nanocomposites for efficient and stable interfacial solar desalination with excellent salt-rejecting performance Soiling, cleaning, and abrasion: The results of the 5-year photovoltaic glass coating field study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1