Thermal and magnetic evolution of Mercury with a layered Fe-Si(-S) core

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2024-06-17 DOI:10.1016/j.epsl.2024.118812
Christopher J. Davies , Anne Pommier , Sam Greenwood , Alfred Wilson
{"title":"Thermal and magnetic evolution of Mercury with a layered Fe-Si(-S) core","authors":"Christopher J. Davies ,&nbsp;Anne Pommier ,&nbsp;Sam Greenwood ,&nbsp;Alfred Wilson","doi":"10.1016/j.epsl.2024.118812","DOIUrl":null,"url":null,"abstract":"<div><p>Elucidating the structure and composition of Mercury is important for understanding its interior dynamics and evolution. The planet is characterised by unusual chemical characteristics and a weak magnetic field generated in a large metallic core, and its early evolution was also marked by the presence of a magnetic field, widespread volcanism and global contraction. Here we develop a parameterised model of coupled core-mantle thermal and magnetic evolution considering a layered Fe-Si(-S) core structure with chemical and physical properties of the mantle and the core based on previous laboratory studies. We seek successful solutions that are consistent with observations of Mercury's long-lived dynamo, total global contraction, present-day crustal thickness, and present-day interior structure. Successful solutions have a mantle reference viscosity <span><math><mo>&gt;</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>21</mn></mrow></msup></math></span> Pa s (corresponding to a present-day bulk mantle viscosity <span><math><mo>&gt;</mo><mn>2</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>20</mn></mrow></msup></math></span> Pa s), a silicon concentration in the core &gt;13 wt%, a present inner core radius of <span><math><mo>∼</mo><mn>1000</mn><mo>−</mo><mn>1200</mn></math></span> km and a thermally stable layer ∼ <span><math><mn>500</mn><mo>−</mo><mn>800</mn></math></span> km thick below the core-mantle boundary. Our results show that if present, a molten FeS layer atop the core has minimal effect on Mercury's long-term thermal and magnetic evolution. Predictions from our models can be tested with upcoming Bepi-Colombo observations.</p></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012821X24002450/pdfft?md5=fd9a671970d3ac4ec1d8c772fed14d12&pid=1-s2.0-S0012821X24002450-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24002450","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the structure and composition of Mercury is important for understanding its interior dynamics and evolution. The planet is characterised by unusual chemical characteristics and a weak magnetic field generated in a large metallic core, and its early evolution was also marked by the presence of a magnetic field, widespread volcanism and global contraction. Here we develop a parameterised model of coupled core-mantle thermal and magnetic evolution considering a layered Fe-Si(-S) core structure with chemical and physical properties of the mantle and the core based on previous laboratory studies. We seek successful solutions that are consistent with observations of Mercury's long-lived dynamo, total global contraction, present-day crustal thickness, and present-day interior structure. Successful solutions have a mantle reference viscosity >1021 Pa s (corresponding to a present-day bulk mantle viscosity >2×1020 Pa s), a silicon concentration in the core >13 wt%, a present inner core radius of 10001200 km and a thermally stable layer ∼ 500800 km thick below the core-mantle boundary. Our results show that if present, a molten FeS layer atop the core has minimal effect on Mercury's long-term thermal and magnetic evolution. Predictions from our models can be tested with upcoming Bepi-Colombo observations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有层状 Fe-Si(-S)内核的水星的热演化和磁演化
阐明水星的结构和组成对于了解其内部动态和演化非常重要。这颗行星的特点是具有不寻常的化学特性和在大型金属内核中产生的弱磁场,其早期演化的特点还包括磁场的存在、广泛的火山活动和全球收缩。在这里,我们建立了一个地核-地幔热演化和磁场演化耦合的参数化模型,该模型考虑了层状的 Fe-Si(-S)地核结构,地幔和地核的化学和物理特性均基于先前的实验室研究。我们寻求与水星长寿命动力、全球总收缩、现今地壳厚度和现今内部结构观测结果相一致的成功解决方案。成功的解决方案有一个地幔参考粘度>1021帕秒(相当于现在的地幔体积粘度>2×1020帕秒),内核中的硅浓度>13 wt%,现在的内核半径∼1000-1200千米,内核-地幔边界以下有一个厚度∼500-800千米的热稳定层。我们的结果表明,如果水星内核顶部存在熔融FeS层,那么它对水星的长期热演化和磁演化的影响微乎其微。我们的模型预测可以通过即将进行的Bepi-Colombo观测进行检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Impact of riverine sediment mineralogy on seawater Nd isotope compositions in the northeastern part of the Indian Ocean during the last two glacial cycles Mantle deformation in the highly oblique indo-burma subduction system inferred from shear wave splitting measurements Unraveling the tectonic evolution of the Andean hinterland (Argentina and Chile, 30°S) using multi-sample thermal history models Atypical crustal structure of the Makran subduction zone and seismotectonic implications Subduction-driven mantle flow beneath active back-arc basins inferred from seismic anisotropy tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1