The optoelectronic properties of acetylene based compounds as hole transporter in perovskite solar cells: A computational study

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-06-18 DOI:10.1016/j.solener.2024.112701
Sevda Neghabi, Rahim Ghadari
{"title":"The optoelectronic properties of acetylene based compounds as hole transporter in perovskite solar cells: A computational study","authors":"Sevda Neghabi,&nbsp;Rahim Ghadari","doi":"10.1016/j.solener.2024.112701","DOIUrl":null,"url":null,"abstract":"<div><p>Hole transport materials (HTMs)<!--> <!-->are pivotal components in<!--> <!-->perovskite solar cells (PSCs), significantly influencing their<!--> <!-->power conversion efficiency (PCE). This study explores the potential of various<!--> <!-->diacetylide-triphenylamine (DATPA) derivatives (HTMs 1–8)<!--> <!-->to function as hole transporters, employing<!--> <!-->density functional theory (DFT)<!--> <!-->and<!--> <!-->time-dependent density functional theory (TD-DFT)<!--> <!-->calculations.</p><p>The energy levels of the<!--> <!-->highest occupied molecular orbital (HOMO)<!--> <!-->and<!--> <!-->lowest unoccupied molecular orbital (LUMO), as well as the<!--> <!-->band gap, were computed using the<!--> <!-->B3LYP/6-311G(d)<!--> <!-->level of theory. The findings reveal that, with the exception of HTM 8, these compounds exhibit suitable HOMO and LUMO levels relative to the perovskite layer and possess a lower band gap energy compared to the commonly used<!--> <!-->spiro-OMeTAD.</p><p>Additionally, the calculation of<!--> <!-->hole mobility (Kh)<!--> <!-->using the Marcus method demonstrated a satisfactory value, substantiating the applicability of these compounds as HTMs. Further calculations of parameters such as<!--> <!-->hole reorganization energy (λh),<!--> <!-->absolute hardness (η),<!--> <!-->ionization potential (IP),<!--> <!-->electronic affinity (EA),<!--> <!-->solubility (ΔGsolv), and<!--> <!-->exciton binding energy (Eb)<!--> <!-->affirm that these compounds are promising candidates for hole transport in perovskite solar cells. Notably, the compound<!--> <!-->HTM 2 (NMe2-DATPA)<!--> <!-->outperforms the others in hole transfer efficiency.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24003967","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Hole transport materials (HTMs) are pivotal components in perovskite solar cells (PSCs), significantly influencing their power conversion efficiency (PCE). This study explores the potential of various diacetylide-triphenylamine (DATPA) derivatives (HTMs 1–8) to function as hole transporters, employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations.

The energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), as well as the band gap, were computed using the B3LYP/6-311G(d) level of theory. The findings reveal that, with the exception of HTM 8, these compounds exhibit suitable HOMO and LUMO levels relative to the perovskite layer and possess a lower band gap energy compared to the commonly used spiro-OMeTAD.

Additionally, the calculation of hole mobility (Kh) using the Marcus method demonstrated a satisfactory value, substantiating the applicability of these compounds as HTMs. Further calculations of parameters such as hole reorganization energy (λh), absolute hardness (η), ionization potential (IP), electronic affinity (EA), solubility (ΔGsolv), and exciton binding energy (Eb) affirm that these compounds are promising candidates for hole transport in perovskite solar cells. Notably, the compound HTM 2 (NMe2-DATPA) outperforms the others in hole transfer efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过氧化物太阳能电池中作为空穴传输器的乙炔基化合物的光电特性:计算研究
空穴传输材料(HTMs)是过氧化物太阳能电池(PSCs)中的关键部件,对其功率转换效率(PCE)有显著影响。本研究采用密度泛函理论(DFT)和时变密度泛函理论(TD-DFT)计算方法,探讨了各种二乙酰化三苯胺(DATPA)衍生物(HTMs 1-8)作为空穴传输体的潜力。研究结果表明,除 HTM 8 外,这些化合物相对于包晶层表现出合适的 HOMO 和 LUMO 水平,并且与常用的螺-OMeTAD 相比具有更低的带隙能。对空穴重组能(λh)、绝对硬度(η)、电离电位(IP)、电子亲和力(EA)、溶解度(ΔGsolv)和激子结合能(Eb)等参数的进一步计算证实,这些化合物有望在过氧化物太阳能电池中实现空穴传输。值得注意的是,化合物 HTM 2(NMe2-DATPA)的空穴传输效率优于其他化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Experimental study of the solar chimney effect in naturally ventilated BIPV cladding system under real operating condition Exploring the influence of switching frequency on the stability in a weak grid: A comprehensive analysis of grid-connected photovoltaic systems Experimental study and simulation of Hybrid-Active solar thermal cylindrical chamber for Citrus Hystrix leaves drying High-efficiency 3D solar evaporators with the PSAVF strategy for achieving excellent salt resistance Design of multi-objective optimized dynamic photovoltaic shades and thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1