Fracture propagation law of temporary plugging and diversion fracturing in shale reservoirs under completion experiments of horizontal well with multi-cluster sand jetting perforation
Yushi ZOU , Yanchao LI , Can YANG , Shicheng ZHANG , Xinfang MA , Longqing ZOU
{"title":"Fracture propagation law of temporary plugging and diversion fracturing in shale reservoirs under completion experiments of horizontal well with multi-cluster sand jetting perforation","authors":"Yushi ZOU , Yanchao LI , Can YANG , Shicheng ZHANG , Xinfang MA , Longqing ZOU","doi":"10.1016/S1876-3804(24)60500-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducted temporary plugging and diversion fracturing (TPDF) experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation. The effects of temporary plugging agent (TPA) particle size, TPA concentration, single-cluster perforation number and cluster number on plugging pressure, multi-fracture diversion pattern and distribution of TPAs were investigated. A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures. The addition of fibers can quickly achieve ultra-high pressure, but it may lead to longitudinal fractures extending along the wellbore. The temporary plugging peak pressure increases with an increase in the concentration of the TPA, reaching a peak at a certain concentration, and further increases do not significantly improve the temporary plugging peak pressure. The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number. A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure, and it has a more significant control on the propagation of multi-cluster fractures. A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures, while a higher number of clusters makes it difficult to achieve effective plugging. The TPAs within the fracture is mainly concentrated in the complex fracture areas, especially at the intersections of fractures. Meanwhile, the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 3","pages":"Pages 715-726"},"PeriodicalIF":7.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424605008/pdf?md5=7f44ccf929b463d7d6599a73856577b5&pid=1-s2.0-S1876380424605008-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380424605008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducted temporary plugging and diversion fracturing (TPDF) experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation. The effects of temporary plugging agent (TPA) particle size, TPA concentration, single-cluster perforation number and cluster number on plugging pressure, multi-fracture diversion pattern and distribution of TPAs were investigated. A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures. The addition of fibers can quickly achieve ultra-high pressure, but it may lead to longitudinal fractures extending along the wellbore. The temporary plugging peak pressure increases with an increase in the concentration of the TPA, reaching a peak at a certain concentration, and further increases do not significantly improve the temporary plugging peak pressure. The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number. A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure, and it has a more significant control on the propagation of multi-cluster fractures. A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures, while a higher number of clusters makes it difficult to achieve effective plugging. The TPAs within the fracture is mainly concentrated in the complex fracture areas, especially at the intersections of fractures. Meanwhile, the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.