Protein 1619 of Pseudomonas putida WBC-3 participates in para-nitrophenol degradation by converting p-benzoquinone to hydroquinone

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Biodeterioration & Biodegradation Pub Date : 2024-06-18 DOI:10.1016/j.ibiod.2024.105845
Zhongchan Peng , Wenxian Zhang , Yishuang Duan , Jing Gu , Jiaoyu Deng
{"title":"Protein 1619 of Pseudomonas putida WBC-3 participates in para-nitrophenol degradation by converting p-benzoquinone to hydroquinone","authors":"Zhongchan Peng ,&nbsp;Wenxian Zhang ,&nbsp;Yishuang Duan ,&nbsp;Jing Gu ,&nbsp;Jiaoyu Deng","doi":"10.1016/j.ibiod.2024.105845","DOIUrl":null,"url":null,"abstract":"<div><p>It is necessary to develop appropriate approaches to eliminate <em>para</em>-nitrophenol (PNP) in our environment, because the pollutant is highly toxic and also able to persist in the environment. Previously, <em>Pseudomonas</em> sp. strain WBC-3 isolated from polluted soil was found to be able to use PNP as the sole carbon and nitrogen source, but not very efficiently. In this study, WBC-3 was shown to belong to <em>Pseudomonas putida</em> through <em>de novo</em> genome sequencing. To enhance its efficiency of PNP utilization, a mutant strain (PM1-33) with a significantly increased PNP degradation rate was obtained. Although no increase in the expression levels of known PNP catabolizing genes/proteins were observed between WBC-3 and PM1-33, the expression level of protein 1619 significantly increased in PM1-33. Deleting <em>GM1619</em> in WBC-3 and PM1-33 caused decreased PNP degradation rates in both strains and eliminated the difference in PNP degradation between the two strains. Functional prediction using AlphaFold2 showed that protein1619 might bind to <em>p</em>-benzoquinone (BQ). Consequently, protein 1619 was biochemically characterized, confirming its ability to convert BQ into hydroquinone (HQ). Thus, a new protein involved in PNP degradation was identified, thereby adding new knowledge to bacterial PNP degradation pathways.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0964830524001161/pdfft?md5=544c893bfed72153d7834147d91690f9&pid=1-s2.0-S0964830524001161-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001161","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is necessary to develop appropriate approaches to eliminate para-nitrophenol (PNP) in our environment, because the pollutant is highly toxic and also able to persist in the environment. Previously, Pseudomonas sp. strain WBC-3 isolated from polluted soil was found to be able to use PNP as the sole carbon and nitrogen source, but not very efficiently. In this study, WBC-3 was shown to belong to Pseudomonas putida through de novo genome sequencing. To enhance its efficiency of PNP utilization, a mutant strain (PM1-33) with a significantly increased PNP degradation rate was obtained. Although no increase in the expression levels of known PNP catabolizing genes/proteins were observed between WBC-3 and PM1-33, the expression level of protein 1619 significantly increased in PM1-33. Deleting GM1619 in WBC-3 and PM1-33 caused decreased PNP degradation rates in both strains and eliminated the difference in PNP degradation between the two strains. Functional prediction using AlphaFold2 showed that protein1619 might bind to p-benzoquinone (BQ). Consequently, protein 1619 was biochemically characterized, confirming its ability to convert BQ into hydroquinone (HQ). Thus, a new protein involved in PNP degradation was identified, thereby adding new knowledge to bacterial PNP degradation pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假单胞菌 WBC-3 的蛋白 1619 通过将对苯醌转化为对苯二酚参与对硝基苯酚降解过程
由于对硝基苯酚(PNP)具有剧毒,而且能够在环境中持久存在,因此有必要开发适当的方法来消除环境中的对硝基苯酚。此前,从污染土壤中分离出的假单胞菌 WBC-3 菌株被发现能够利用对硝基苯酚作为唯一的碳源和氮源,但效率不高。在本研究中,通过从头开始的基因组测序,WBC-3 被证明属于假单胞菌(Pseudomonas putida)。为了提高其利用 PNP 的效率,研究人员获得了一株 PNP 降解率显著提高的突变菌株(PM1-33)。虽然在 WBC-3 和 PM1-33 之间没有观察到已知 PNP 分解基因/蛋白质表达水平的增加,但在 PM1-33 中,蛋白质 1619 的表达水平明显增加。在 WBC-3 和 PM1-33 中删除 GM1619 会导致两种菌株的 PNP 降解率下降,并消除两种菌株之间的 PNP 降解差异。使用 AlphaFold2 进行的功能预测显示,蛋白质 1619 可能与对苯醌(BQ)结合。因此,对蛋白 1619 进行了生物化学鉴定,证实了其将对苯醌(BQ)转化为对苯二酚(HQ)的能力。因此,发现了一种参与 PNP 降解的新蛋白,从而为细菌的 PNP 降解途径增添了新的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
期刊最新文献
Biodegradation mechanism of asphalt by microbial consortia in asphalt pavement of forest area road Monoterpenes profile and high temperature as a potential factors in the infestation of wooden structures by Hylotrupes bajulus L Synergistic remediation of electroplating wastewater contaminated soil and reduction of risk of groundwater contamination by biochar and Pseudomonas hibiscicola strain L1 Dynamics of plastisphere microbial communities in mangrove sediments and their potential impact on N-cycling Exploring the chemical profiling and insecticidal properties of essential oils from fresh and discarded lemon peels, Citrus limon against pulse beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1