Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Nature Electronics Pub Date : 2024-06-19 DOI:10.1038/s41928-024-01194-0
Sijie Zheng, Xiaowei Wang, Weizheng Li, Ziyang Liu, Qingning Li, Feng Yan
{"title":"Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles","authors":"Sijie Zheng, Xiaowei Wang, Weizheng Li, Ziyang Liu, Qingning Li, Feng Yan","doi":"10.1038/s41928-024-01194-0","DOIUrl":null,"url":null,"abstract":"Stretchable electronic devices are of use in the development of bioelectronics, wearable devices and healthcare monitoring. Liquid-metal-based stretchable devices are of particular interest for such systems but typically require complex manufacturing processes and suffer from poor interfacial adhesion between the liquid metal and polymeric substrates. Here we show that a membrane of electrospun polymer fibres containing semi-embedded liquid metal particles can be used to make stretchable electronics. The liquid metal particles within the fibre network rupture under pressure and fill the gaps in the fibre mesh to form conductive regions. This enables the creation of circuits with high resolution (minimum linewidths of 50 µm) and stability (over 30,000 cycles of 100% strain) using circuit-patterned stamps. The circuits can be integrated with various electronic components to achieve different functions, including square wave signal output, light emission and wireless charging. We used this approach to create sensors for bioelectrical signal monitoring, thus illustrating the biocompatibility and permeability of the membranes. We also show that the liquid-metal-containing fibre membranes can be separated into their individual components and recycled. A membrane of polymer fibres containing semi-embedded liquid metal particles can be selectively ruptured with a patterned stamp to produce stretchable circuits with high resolution and interfacial adhesion between the liquid metal and the polymer.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01194-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Stretchable electronic devices are of use in the development of bioelectronics, wearable devices and healthcare monitoring. Liquid-metal-based stretchable devices are of particular interest for such systems but typically require complex manufacturing processes and suffer from poor interfacial adhesion between the liquid metal and polymeric substrates. Here we show that a membrane of electrospun polymer fibres containing semi-embedded liquid metal particles can be used to make stretchable electronics. The liquid metal particles within the fibre network rupture under pressure and fill the gaps in the fibre mesh to form conductive regions. This enables the creation of circuits with high resolution (minimum linewidths of 50 µm) and stability (over 30,000 cycles of 100% strain) using circuit-patterned stamps. The circuits can be integrated with various electronic components to achieve different functions, including square wave signal output, light emission and wireless charging. We used this approach to create sensors for bioelectrical signal monitoring, thus illustrating the biocompatibility and permeability of the membranes. We also show that the liquid-metal-containing fibre membranes can be separated into their individual components and recycled. A membrane of polymer fibres containing semi-embedded liquid metal particles can be selectively ruptured with a patterned stamp to produce stretchable circuits with high resolution and interfacial adhesion between the liquid metal and the polymer.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用含有半嵌入式液态金属颗粒的纳米纤维膜的压印可拉伸电子器件
可拉伸电子设备可用于开发生物电子学、可穿戴设备和医疗监控。基于液态金属的可拉伸设备在此类系统中尤为重要,但通常需要复杂的制造工艺,而且液态金属与聚合物基底之间的界面粘附性较差。在这里,我们展示了含有半嵌入式液态金属颗粒的电纺聚合物纤维膜可用于制造可拉伸电子器件。纤维网中的液态金属颗粒在压力作用下会破裂,并填充纤维网中的空隙,形成导电区域。这样就能利用电路图案印章制作出具有高分辨率(最小线宽为 50 微米)和稳定性(100% 应变下超过 30,000 次循环)的电路。电路可与各种电子元件集成,以实现不同的功能,包括方波信号输出、光发射和无线充电。我们用这种方法制作了用于生物电信号监测的传感器,从而说明了膜的生物兼容性和渗透性。我们还展示了含液态金属的纤维膜可以分离成单独的成分并回收利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
期刊最新文献
The development of general-purpose brain-inspired computing High-performance p-type field-effect transistors using substitutional doping and thickness control of two-dimensional materials A seamless graphene spin valve based on proximity to van der Waals magnet Cr2Ge2Te6 A single-transducer echomyography system for monitoring muscle activity Scientific challenges in governing military AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1