Yongxia Huang, Lu Li, Renhui Li, Biqing Li, Qilin Wang, Kang Song
{"title":"Nitrogen cycling and resource recovery from aquaculture wastewater treatment systems: a review","authors":"Yongxia Huang, Lu Li, Renhui Li, Biqing Li, Qilin Wang, Kang Song","doi":"10.1007/s10311-024-01763-x","DOIUrl":null,"url":null,"abstract":"<div><p>The rising aquaculture industry has induced an increase in aquaculture waste, calling for advanced methods to recycle waste in the context of the circular economy. Here, we review methods to treat aquaculture wastewater such as the biofloc technique, aquaponic-aquaculture, rice-fish co-culture, microalgae culture, algal–bacterial culture, membrane and moving bed bioreactors, and electrochemical techniques. We discuss nitrogen cycling, resources recovery, and nitrous oxide emission and mitigations. We observed that aquaculture wastewater irrigation allows for enhanced plant biomass, and biofloc technology improves fish biomass. Nitrogen removal processes, including anammox and partial nitrification, show improved performance. Nitrous oxide emission is mainly dependent on the total ammonia and nitrite concentration.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 5","pages":"2467 - 2482"},"PeriodicalIF":15.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01763-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rising aquaculture industry has induced an increase in aquaculture waste, calling for advanced methods to recycle waste in the context of the circular economy. Here, we review methods to treat aquaculture wastewater such as the biofloc technique, aquaponic-aquaculture, rice-fish co-culture, microalgae culture, algal–bacterial culture, membrane and moving bed bioreactors, and electrochemical techniques. We discuss nitrogen cycling, resources recovery, and nitrous oxide emission and mitigations. We observed that aquaculture wastewater irrigation allows for enhanced plant biomass, and biofloc technology improves fish biomass. Nitrogen removal processes, including anammox and partial nitrification, show improved performance. Nitrous oxide emission is mainly dependent on the total ammonia and nitrite concentration.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.