Harmonizing Between Chemical Functionality and Surface Area of Porous Organic Polymeric Nanotraps for Tuning Carbon Dioxide Capture.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2024-06-20 DOI:10.1002/asia.202400515
Dhruba Jyoti Deka, Chandan Biswas, Ratul Paul, Jiabin Xu, Yining Huang, Duy Quang Dao, John Mondal
{"title":"Harmonizing Between Chemical Functionality and Surface Area of Porous Organic Polymeric Nanotraps for Tuning Carbon Dioxide Capture.","authors":"Dhruba Jyoti Deka, Chandan Biswas, Ratul Paul, Jiabin Xu, Yining Huang, Duy Quang Dao, John Mondal","doi":"10.1002/asia.202400515","DOIUrl":null,"url":null,"abstract":"<p><p>Two hydroxy rich hypercrosslinked POPs, namely Ph/Tt-POP have been developed by facile one-pot condensation polymerization strategy. The high surface areas of both the Ph/Tt-POP (1057 and 893 m2g-1, respectively), and the heteroatom functionality in the POP framework instigated us to explore our material for CO2 adsorption study. The CO2 uptake capacities in Ph/Tt-POP are found to be 2.45 and 2.2 mmol g-1, at 273 K respectively. in-situ static 13C NMR experiment shows that CO2 molecules in Tt-POP appear to be less mobile than those in Ph-POP which probably due to the presence of triazine functional groups along with high abundant -OH groups in the Tt-POP framework. An in-depth study of the CO2 adsorption mechanism by density functional theory (DFT) calculations also shows that CO2 adsorption at the cages formed by two benzyl rings represents the most stable interaction and CO2 molecule is more favorably adsorbed on the Ph-POP with the more negative interaction energies values compared to that of Tt-POP. Non-covalent interaction (NCI) plot revealed that CO2 molecule is adsorbed more on the Ph-POP than Tt-POP, which can be explained by hydrogen bond formation in case of Tt-POP repeating units turning aside CO2 molecule to interact with the Ph component.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202400515","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two hydroxy rich hypercrosslinked POPs, namely Ph/Tt-POP have been developed by facile one-pot condensation polymerization strategy. The high surface areas of both the Ph/Tt-POP (1057 and 893 m2g-1, respectively), and the heteroatom functionality in the POP framework instigated us to explore our material for CO2 adsorption study. The CO2 uptake capacities in Ph/Tt-POP are found to be 2.45 and 2.2 mmol g-1, at 273 K respectively. in-situ static 13C NMR experiment shows that CO2 molecules in Tt-POP appear to be less mobile than those in Ph-POP which probably due to the presence of triazine functional groups along with high abundant -OH groups in the Tt-POP framework. An in-depth study of the CO2 adsorption mechanism by density functional theory (DFT) calculations also shows that CO2 adsorption at the cages formed by two benzyl rings represents the most stable interaction and CO2 molecule is more favorably adsorbed on the Ph-POP with the more negative interaction energies values compared to that of Tt-POP. Non-covalent interaction (NCI) plot revealed that CO2 molecule is adsorbed more on the Ph-POP than Tt-POP, which can be explained by hydrogen bond formation in case of Tt-POP repeating units turning aside CO2 molecule to interact with the Ph component.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协调多孔有机聚合物纳米捕集器的化学功能和表面积,以调整二氧化碳捕集。
通过简单的一锅缩合聚合策略,我们开发出了两种富含羟基的超交联持久性有机污染物,即 Ph/Tt-POP。Ph/Tt-POP 的高比表面积(分别为 1057 和 893 m2g-1)和持久性有机污染物框架中的杂原子功能促使我们对这种材料进行二氧化碳吸附研究。原位静态 13C NMR 实验表明,Tt-POP 中二氧化碳分子的流动性似乎比 Ph-POP 中的要小,这可能是由于 Tt-POP 框架中存在三嗪官能团和大量的 -OH 基团。通过密度泛函理论(DFT)计算对二氧化碳吸附机理的深入研究还表明,二氧化碳吸附在由两个苄基环形成的笼子上代表了最稳定的相互作用,与 Tt-POP 相比,二氧化碳分子更有利于吸附在 Ph-POP 上,其相互作用能值为负值。非共价相互作用(NCI)图显示,与 Tt-POP 相比,二氧化碳分子在 Ph-POP 上的吸附量更大,这可以解释为 Tt-POP 重复单元中形成的氢键使二氧化碳分子转向一侧,从而与 Ph 成分相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
Synthesis and Properties of a Strained Triple Nanohoop. A New Method of Constructing Methyleneindene and Quinoline Frameworks from Methylenecyclopropanes. ATI Stabilized Germylene Cation as a Cyanosilylation Catalyst for Aldehydes and Ketones. Near-Infrared Absorbing Aza-BODIPY Dyes for Optoelectronic Applications. Development of High Performance Thermoelectric Polymers via Doping or Dedoping Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1