Effects of cyclic antimicrobial lipopeptides from Bacillus subtilis on growth performance, intestinal morphology, and cecal gene expression and microbiota community in broilers
{"title":"Effects of cyclic antimicrobial lipopeptides from Bacillus subtilis on growth performance, intestinal morphology, and cecal gene expression and microbiota community in broilers","authors":"Hsiu-Wei Chen, Yu-Hsiang Yu","doi":"10.1111/asj.13971","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the effects of cyclic antimicrobial lipopeptides (CLPs) from <i>Bacillus subtilis</i> on the growth performance, gut morphology, and cecal gene expression and microbiota in broilers; 120 1-day-old unsexed Arbor Acres chicks were randomly divided into four groups, with six replicates in each group and five broilers per cage. These groups were fed a basal diet (C), basal diet plus 10-mg enramycin/kg (E), and basal diet plus 51-mg CLPs/kg (L) or 102-mg CLPs/kg (H). The results indicated that CLP supplementation linearly increased the body weight compared with the C group at 35 days of age. Between 15 and 35 days and 1 and 35 days of age, CLP supplementation linearly increased the average daily gain compared with the C group. The duodenal villus height was significantly increased in the H group compared with the C and E groups. In the cecum, CLP supplementation linearly increased <i>SOD</i> and <i>ZO-1</i> mRNA expression compared with the C group. β diversity of microbiota indicated distinct clusters between the groups. CLP supplementation linearly increased the abundance of the genus <i>Lactobacillus</i> in the cecal digesta compared with the C group. These results demonstrate that <i>B. subtilis</i>–produced CLPs dose-dependently increase broilers' growth performance, improve their gut morphology, and modulate their gut microbiota.</p>","PeriodicalId":7890,"journal":{"name":"Animal Science Journal","volume":"95 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Science Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/asj.13971","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effects of cyclic antimicrobial lipopeptides (CLPs) from Bacillus subtilis on the growth performance, gut morphology, and cecal gene expression and microbiota in broilers; 120 1-day-old unsexed Arbor Acres chicks were randomly divided into four groups, with six replicates in each group and five broilers per cage. These groups were fed a basal diet (C), basal diet plus 10-mg enramycin/kg (E), and basal diet plus 51-mg CLPs/kg (L) or 102-mg CLPs/kg (H). The results indicated that CLP supplementation linearly increased the body weight compared with the C group at 35 days of age. Between 15 and 35 days and 1 and 35 days of age, CLP supplementation linearly increased the average daily gain compared with the C group. The duodenal villus height was significantly increased in the H group compared with the C and E groups. In the cecum, CLP supplementation linearly increased SOD and ZO-1 mRNA expression compared with the C group. β diversity of microbiota indicated distinct clusters between the groups. CLP supplementation linearly increased the abundance of the genus Lactobacillus in the cecal digesta compared with the C group. These results demonstrate that B. subtilis–produced CLPs dose-dependently increase broilers' growth performance, improve their gut morphology, and modulate their gut microbiota.
期刊介绍:
Animal Science Journal (a continuation of Animal Science and Technology) is the official journal of the Japanese Society of Animal Science (JSAS) and publishes Original Research Articles (full papers and rapid communications) in English in all fields of animal and poultry science: genetics and breeding, genetic engineering, reproduction, embryo manipulation, nutrition, feeds and feeding, physiology, anatomy, environment and behavior, animal products (milk, meat, eggs and their by-products) and their processing, and livestock economics. Animal Science Journal will invite Review Articles in consultations with Editors. Submission to the Journal is open to those who are interested in animal science.